Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress.
نویسندگان
چکیده
Fluid shear stress enhances NO formation via a Ca2+-independent tyrosine kinase inhibitor-sensitive pathway. In the present study, we investigated the effects of the protein tyrosine phosphatase inhibitor phenylarsine oxide and of fluid shear stress on endothelial NO production as well as on the membrane association and phosphorylation of the NO synthase (NOS) III. Phenylarsine oxide (10 micromol/L) induced an immediate and maintained NO-mediated relaxation of isolated rabbit carotid arteries, which was insensitive to the removal of extracellular Ca2+ and the calmodulin antagonist calmidazolium. This phenylarsine oxide-induced vasodilatation was unaffected by genistein but abrogated by the tyrosine kinase inhibitor erbstatin A. Incubation of native or cultured endothelial cells with phenylarsine oxide resulted in a time-dependent tyrosine phosphorylation of mainly Triton X-100-insoluble (cytoskeletal) proteins, along with a parallel change in the detergent solubility of NOS III, such that the enzyme was recovered in the cytoskeletal fraction. A similar, though slightly delayed, phenomenon was also observed after the application of fluid shear stress but not in response to any receptor-dependent agonist. Although Ca2+-independent NO formation was sensitive to erbstatin A, phenylarsine oxide treatment was associated with the tyrosine dephosphorylation of NOS III rather than its hyperphosphorylation. Proteins that also underwent redistribution in response to the tyrosine phosphatase inhibitor included paxillin, phospholipase C-gamma1, mitogen-activated protein kinase, and the tyrosine kinases Src and Fyn. We envisage that fluid shear stress and tyrosine phosphatase inhibitors may alter the conformation and/or protein coupling of NOS III, facilitating its interaction with specific phospholipids, proteins, and/or protein kinases that enhance/maintain its Ca2+-independent activation.
منابع مشابه
Ca-Independent Activation of the Endothelial Nitric Oxide Synthase in Response to Tyrosine Phosphatase Inhibitors and Fluid Shear Stress
Fluid shear stress enhances NO formation via a Ca-independent tyrosine kinase inhibitor–sensitive pathway. In the present study, we investigated the effects of the protein tyrosine phosphatase inhibitor phenylarsine oxide and of fluid shear stress on endothelial NO production as well as on the membrane association and phosphorylation of the NO synthase (NOS) III. Phenylarsine oxide (10 mmol/L) ...
متن کاملIsometric contraction induces the Ca2+-independent activation of the endothelial nitric oxide synthase.
Shear stress and tyrosine phosphatase inhibitors have been shown to activate the endothelial NO synthase (eNOS) in a Ca2+/calmodulin-independent manner. We report here that isometric contraction of rabbit aorta activates eNOS by a pharmacologically identical pathway. Endothelium-intact aortic rings were precontracted under isometric conditions up to 60% of the maximal phenylephrine-induced tone...
متن کاملLigand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase.
Fluid shear stress generated by blood flowing over the endothelium is a major determinant of arterial tone, vascular remodeling, and atherogenesis. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an essential role in regulation of vascular function and structure by blood flow, but the molecular mechanisms that transduce mechanical force to eNOS activation are not well underst...
متن کاملFlow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases.
Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS...
متن کاملGab1, SHP2, and protein kinase A are crucial for the activation of the endothelial NO synthase by fluid shear stress.
Fluid shear stress enhances NO production in endothelial cells by a mechanism involving the activation of the phosphatidylinositol 3-kinase and the phosphorylation of the endothelial NO synthase (eNOS). We investigated the role of the scaffolding protein Gab1 and the tyrosine phosphatase SHP2 in this signal transduction cascade in cultured and native endothelial cells. Fluid shear stress elicit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 82 6 شماره
صفحات -
تاریخ انتشار 1998