Cone visual pigments in two marsupial species: the fat-tailed dunnart (Sminthopsis crassicaudata) and the honey possum (Tarsipes rostratus).
نویسندگان
چکیده
Uniquely for non-primate mammals, three classes of cone photoreceptors have been previously identified by microspectrophotometry in two marsupial species: the polyprotodont fat-tailed dunnart (Sminthopsis crassicaudata) and the diprotodont honey possum (Tarsipes rostratus). This report focuses on the genetic basis for these three pigments. Two cone pigments were amplified from retinal cDNA of both species and identified by phylogenetics as members of the short wavelength-sensitive 1 (SWS1) and long wavelength-sensitive (LWS) opsin classes. In vitro expression of the two sequences from the fat-tailed dunnart confirmed the peak absorbances at 363 nm in the UV for the SWS1 pigment and 533 nm for the LWS pigment. No additional expressed cone opsin sequences that could account for the middle wavelength cones could be amplified. However, amplification from the fat-tailed dunnart genomic DNA with RH1 (rod) opsin primer pairs identified two genes with identical coding regions but sequence differences in introns 2 and 3. Uniquely therefore for a mammal, the fat-tailed dunnart has two copies of an RH1 opsin gene. This raises the possibility that the middle wavelength cones express a rod rather than a cone pigment.
منابع مشابه
Trichromacy in Australian Marsupials
Vertebrate color vision is best developed in fish, reptiles, and birds with four distinct cone receptor visual pigments. These pigments, providing sensitivity from ultraviolet to infrared light, are thought to have been present in ancestral vertebrates. When placental mammals adopted nocturnality, they lost two visual pigments, reducing them to dichromacy; primates subsequently reevolved trichr...
متن کاملThe ecology of visual pigment tuning in an Australian marsupial: the honey possum Tarsipes rostratus.
While most mammals have no more than two types of cone photoreceptor, four species of Australian marsupial have recently been shown to possess three types, and thus have the potential for trichromatic colour vision. Interestingly, the long-wave cones of the honey possum Tarsipes rostratus are tuned to longer wavelengths than those of the other species measured to date. We tested whether the hon...
متن کاملIsolation and characterization of melanopsin (Opn4) from the Australian marsupial Sminthopsis crassicaudata (fat-tailed dunnart).
Melanopsin confers photosensitivity to a subset of retinal ganglion cells and is responsible for many non-image-forming tasks, like the detection of light for circadian entrainment. Recently, two melanopsin genes, Opn4m and Opn4x, were described in non-mammalian vertebrates. However, only one form, Opn4m, has been described in the mammals, although studies to date have been limited to the place...
متن کاملBehavioural evidence for marsupial trichromacy
The ability to discriminate red–green colours was thought to be unique among mammals to trichromatic primates [1,2], until recent microspectrophotometric studies revealed that marsupials also have the potential for trichromatic colour vision [3,4]. Functional colour vision cannot be inferred from physiological studies alone [5–8], however, a point of particular importance in this case as molecu...
متن کاملDiversity of Color Vision: Not All Australian Marsupials Are Trichromatic
Color vision in marsupials has recently emerged as a particularly interesting case among mammals. It appears that there are both dichromats and trichromats among closely related species. In contrast to primates, marsupials seem to have evolved a different type of trichromacy that is not linked to the X-chromosome. Based on microspectrophotometry and retinal whole-mount immunohistochemistry, fou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 275 1642 شماره
صفحات -
تاریخ انتشار 2008