Identification of Diffusion Parameters in a Nonlinear Convection–diffusion Equation Using the Augmented Lagrangian Method
نویسندگان
چکیده
Numerical identification of diffusion parameters in a nonlinear convection–diffusion equation is studied. This partial differential equation arises as the saturation equation in the fractional flow formulation of the two–phase porous media flow equations. The forward problem is discretized with the finite difference method, and the identification problem is formulated as a constrained minimization problem. We utilize the augmented Lagrangian method and transform the minimization problem into a coupled system of nonlinear algebraic equations, which is solved efficiently with the nonlinear conjugate gradient method. Numerical experiments are presented and discussed.
منابع مشابه
Finite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملPermeability estimation with the augmented Lagrangian method for a nonlinear diffusion equation
We consider numerical identification of the piecewise constant permeability function in a nonlinear parabolic equation, with the augmented Lagrangian method. By studying this problem, we aim at also gaining some insight into the potential ability of the augmented Lagrangian method to handle permeability estimation within the full two-phase porous-media flow setting. The identification is formul...
متن کاملOn the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کاملNumerical solution of Convection-Diffusion equations with memory term based on sinc method
In this paper, we study the numerical solution of Convection-Diffusion equation with a memory term subject to initial boundary value conditions. Finite difference method in combination with product trapezoidal integration rule is used to discretize the equation in time and sinc collocation method is employed in space. The accuracy and error analysis of the method are discussed. Numeric...
متن کامل