ha o - dy n / 99 10 00 2 v 1 3 O ct 1 99 9 Escape Probability and Mean Residence Time in Random Flows with Unsteady Drift ∗

نویسندگان

  • James R. Brannan
  • Jinqiao Duan
چکیده

We investigate fluid transport in random velocity fields with unsteady drift. First, we propose to quantify fluid transport between flow regimes of different characteristic motion, by escape probability and mean residence time. We then develop numerical algorithms to solve for escape probability and mean residence time, which are described by backward Fokker-Planck type partial differential equations. A few computational issues are also discussed. Finally, we apply these ideas and numerical algorithms to a tidal flow model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ha o - dy n / 93 07 01 1 v 1 2 6 Ju l 1 99 3 Advection of vector fields by chaotic flows 1

" The high average vorticity that is known to exist in turbulent motion is caused by the extension of vortex filaments in an eddying fluid. "

متن کامل

ha o - dy n / 99 03 03 2 v 1 2 3 M ar 1 99 9 On the classical dynamics of billiards on the sphere

We study the classical motion in bidimensional polygonal billiards on the sphere. In particular we investigate the dynamics in tiling and generic rational and irrational equilateral triangles. Unlike the plane or the negative curvature cases we obtain a complex but regular dynamics.

متن کامل

ar X iv : c ha o - dy n / 99 03 01 4 v 1 9 M ar 1 99 9 Transport in finite size systems : an exit time approach

In the framework of chaotic scattering we analyze passive tracer transport in finite systems. In particular, we study models with open streamlines and a finite number of recirculation zones. In the non trivial case with a small number of recirculation zones a description by mean of asymptotic quantities (such as the eddy diffusivity) is not appropriate. The non asymptotic properties of dispersi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008