Modulation of different K+ currents in Drosophila: a hypothetical role for the Eag subunit in multimeric K+ channels.

نویسندگان

  • Y Zhong
  • C F Wu
چکیده

We examined the role of the ether a go-go (eag) gene in modulation of K+ currents and the possibility of its protein product Eag as a subunit in the heteromultimeric assembly of K+ channels by voltage-clamp analysis of larval muscle membrane currents. Previous DNA sequence studies indicate that the eag gene codes for a polypeptide homologous to, but distinct from, the Shaker (Sh) K+ channel subunits (Warmke et al., 1991), and electrophysiological recordings revealed allele-specific effects of eag on four identified K+ currents in Drosophila larval muscles (Zhong and Wu, 1991). Further studies of eag alleles indicated that none of the eag mutations, including alleles producing truncated mRNA messages, eliminate any of the four K+ currents, and that the mutational effects exhibit strong temperature dependence. We found that both W7, an antagonist of Ca2+/calmodulin, and cGMP analogs modulated K+ currents and that their actions were altered or even abolished by eag mutations. These results suggest a role of eag in modulation of K+ currents that may subserve integration of signals at a converging site of the two independent modulatory pathways. The Sh locus is known to encode certain subunits of the IA channel in larval muscle. The existence of multiple eag and Sh alleles enabled an independent test of the idea of Eag as a K+ channel subunit by studying IA in different double-mutant combinations. An array of allele-specific interaction between eag and Sh was observed, which reflects a close association between the Sh and eag subunits within the IA channel. Taken together, our data strengthen the possibility that the eag locus provides a subunit common to different K+ channels. The role of the eag subunit for modulating channels, as opposed to that of Sh subunits required for gating, selectivity, and conductance of the channel, suggest a combinatorial genetic framework for generating diversified K+ channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular Mg2+ Modulates Slow Gating Transitions and the Opening of Drosophila Ether-à-Go-Go Potassium Channels

We have characterized the effects of prepulse hyperpolarization and extracellular Mg(2+) on the ionic and gating currents of the Drosophila ether-à-go-go K(+) channel (eag). Hyperpolarizing prepulses significantly slowed channel opening elicited by a subsequent depolarization, revealing rate-limiting transitions for activation of the ionic currents. Extracellular Mg(2+) dramatically slowed acti...

متن کامل

Contribution of EAG to excitability and potassium currents in Drosophila larval motoneurons.

Diversity in the expression of K(+) channels among neurons allows a wide range of excitability, growth, and functional regulation. Ether-à-go-go (EAG), a voltage-gated K(+) channel, was first characterized in Drosophila mutants by spontaneous firing in nerve terminals and enhanced neurotransmitter release. Although diverse functions have been ascribed to this protein, its role within neurons re...

متن کامل

In vivo analysis of a gain-of-function mutation in the Drosophila eag-encoded K+ channel.

Neuronal Na+ and K+ channels elicit currents in opposing directions and thus have opposing effects on neuronal excitability. Mutations in genes encoding Na+ or K+ channels often interact genetically, leading to either phenotypic suppression or enhancement for genes with opposing or similar effects on excitability, respectively. For example, the effects of mutations in Shaker (Sh), which encodes...

متن کامل

The Blocking Activity of Different Toxins against Potassium Channels Kv3.4 in RLE Cells

Background: K+ channel toxins are essential tools for the first purifications, analysis of subunit structures and brain localization of voltage-gated K+ (Kv) channels. The effects of a lot of toxins on Kv are not fully known. Methods: Using whole-cell patch clamping technique the action of a series of toxins on Kv3.4 current in rat liver cells with expressed Kv3.4 channels (RLE) cloned cells wa...

متن کامل

O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice

The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 11  شماره 

صفحات  -

تاریخ انتشار 1993