Solubility and Bioavailability Enhancement of Poorly Aqueous Soluble Atorvastatin: In Vitro, Ex Vivo, and In Vivo Studies
نویسندگان
چکیده
The objective of this investigation was to improve the solubility of the poorly water soluble drug atorvastatin (ATR), using solid dispersion (SD) techniques, with Neem Gum (NG) as a hydrophilic carrier. The effects of the polymer concentration and method of preparation on the solubility and dissolution rate were studied. The results showed that the solubility of ATR increases with increasing NG concentration. However, dissolution rate of ATR from its SD was dependent on the method used to prepare SD. An in vitro drug release study revealed that the solvent evaporation technique is a more convenient and effective method of preparing SD than kneading method. The SD was characterized using DSC, SEM, and XRD study. An in vivo study was performed in which the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG CoA) reductase inhibition activity was measured. A significant reduction in HMG CoA reductase activity was observed with SD of ATR compared with the plain drug. An ex vivo absorption study was carried out using modified apparatus developed in our laboratory. The in vitro drug release and in vivo and ex vivo studies clearly demonstrated the potential of hydrophilic NG in enhancing the solubility, dissolution rate, and bioavailability of ATR.
منابع مشابه
Development of Microemulsion for Solubility Enhancement of Clopidogrel
Clopidogrel, an inhibitor of platelet aggregation, selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet receptor and the subsequent ADP-mediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. Oral bioavailability of clopidogrel is very low (less than 50%), due to its poor water solubility. The aim of this investigation was ...
متن کاملEvaluation of Carbamazepine (CBZ) Supersaturatable Self-Microemulsifying (S-SMEDDS) Formulation In-vitro and In-vivo
The supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) represents a new thermodynamically stable formulation approach wherein it is designed to contain a reduced amount of surfactant and a water-soluble polymer (precipitation inhibitor or supersaturated promoter) to prevent precipitation of the drug by generating and maintaining a supersaturated state in-vivo. The supersatur...
متن کاملDevelopment of Microemulsion for Solubility Enhancement of Clopidogrel
Clopidogrel, an inhibitor of platelet aggregation, selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet receptor and the subsequent ADP-mediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. Oral bioavailability of clopidogrel is very low (less than 50%), due to its poor water solubility. The aim of this investigation was ...
متن کاملEvaluation of Carbamazepine (CBZ) Supersaturatable Self-Microemulsifying (S-SMEDDS) Formulation In-vitro and In-vivo
The supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) represents a new thermodynamically stable formulation approach wherein it is designed to contain a reduced amount of surfactant and a water-soluble polymer (precipitation inhibitor or supersaturated promoter) to prevent precipitation of the drug by generating and maintaining a supersaturated state in-vivo. The supersatur...
متن کاملSolubility and Dissolution Enhancement: An overview
Poorly water soluble compounds have solubility and dissolution related bioavailability problems. The dissolution rate is directly proportional to solubility of drugs. Drugs with low aqueous solubility have low dissolution rates and hence suffer from oral bioavailability problems. The poor solubility and poor dissolution rate of poorly water soluble drugs in the aqueous gastro intestinal fluids ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014