Bifurcations in Symplectic Space
نویسنده
چکیده
In this paper we take new steps in the theory of symplectic and isotropic bifurcations, by solving the classification problem under a natural equivalence in several typical cases. Moreover we define the notion of coisotropic varieties and formulate also the coisotropic bifurcation problem. We consider several symplectic invariants of isotropic and coisotropic varieties, providing illustrative examples in the simplest non-trivial cases.
منابع مشابه
A sufficient condition for the existence of Hamiltonian bifurcations with continuous isotropy
We present a framework for the study of the local qualitative dynamics of equivariant Hamiltonian flows specially designed for points in phase space with nontrivial isotropy. This is based on the classical construction of structure-preserving tubular neighborhoods for Hamiltonian Lie group actions on symplectic manifolds. This framework is applied to obtaining concrete and testable conditions g...
متن کاملRelative periodic points of symplectic maps: persistence and bifurcations
In this paper we study symplectic maps with a continuous symmetry group arising by periodic forcing of symmetric Hamiltonian systems. By Noether’s Theorem, for each continuous symmetry the symplectic map has a conserved momentum. We study the persistence of relative periodic points of the symplectic map when momentum is varied and also treat subharmonic persistence and relative subharmonic bifu...
متن کاملNoise-induced escape from bifurcating attractors: Symplectic approach in the weak-noise limit.
The effect of noise is studied in one-dimensional maps undergoing transcritical, tangent, and pitchfork bifurcations. The attractors of the noiseless map become metastable states in the presence of noise. In the weak-noise limit, a symplectic two-dimensional map is associated with the original one-dimensional map. The consequences of their noninvertibility on the phase-space structures are disc...
متن کاملInvariant curves near Hamiltonian Hopf bifurcations of D symplectic maps
In this paper we give a numerical description of the neighbourhood of a xed point of a symplectic map undergoing a transition from linear stability to complex instability i e the so called Hamiltonian Hopf bifurcation We have considered both the direct and inverse cases The study is based on the numerical computation of the Lyapunov families of invariant curves near the xed point We show how th...
متن کاملMaximal prehomogeneous subspaces on classical groups
Suppose $G$ is a split connected reductive orthogonal or symplectic group over an infinite field $F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is the Lie algebra of the unipotent radical $N.$ Under the adjoint action of its stabilizer in $M,$ every maximal prehomogeneous subspaces of $frak{n}$ is determined.
متن کامل