Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line.

نویسندگان

  • K Imamura
  • T Ogura
  • A Kishimoto
  • M Kaminishi
  • H Esumi
چکیده

5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) is an activator of AMP activated protein kinase (AMPK) and a regulator of de novo purine synthesis. There are several earlier reports indicating that AICAR treatment suppresses cell growth via regulation of AMPK or de novo purine synthesis. We found cell growth to be suppressed by AICAR treatment in HepG2 because of p53 accumulation, which was associated with p53-Ser15 phosphorylation. Moreover, a motif very similar to the consensus motif of AMPK phosphorylation was found around p53-Ser15, and Ser15 phosphorylation was detected in AICAR treated HepG2 as was in vitro phosphorylation by AMPK. Our results suggest that AICAR may regulate cell growth via p53 phosphorylation, and also indicate the possibility of p53 phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interference with energy metabolism by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside induces HPV suppression in cervical carcinoma cells and apoptosis in the absence of LKB1.

Carcinogenesis is a dynamic and stepwise process, which is accompanied by a variety of somatic and epigenetic alterations in response to a changing microenvironment. Hypoxic conditions will select for cells that have adjusted their metabolic profile and can maintain proliferation by successfully competing for scarce nutritional and oxygen resources. In the present study we have investigated the...

متن کامل

Potentiation of insulin-stimulated glucose transport by the AMP-activated protein kinase.

Data from the use of activators and inhibitors of the AMP-activated protein kinase (AMPK) suggest that AMPK increases sensitivity of glucose transport to stimulation by insulin in muscle cells. We assayed insulin action after adenoviral (Ad) transduction of constitutively active (CA; a truncated form of AMPKalpha(1)) and dominant-negative (DN; which depletes endogenous AMPKalpha) forms of AMPKa...

متن کامل

Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK).

In the rat liver epithelial cell line Clone 9, the V(max) for glucose uptake is acutely increased by inhibition of oxidative phosphorylation and by osmotic stress. By using a membrane-impermeant photoaffinity labelling reagent together with an isoform-specific antibody, we have, for the first time, provided direct evidence for the involvement of the GLUT1 glucose transporter isoform in this res...

متن کامل

Inhibition of hepatic phosphatidylcholine synthesis by 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside is independent of AMP-activated protein kinase activation.

5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAr), a commonly used indirect activator of AMP-activated protein kinase (AMPK), inhibits phosphatidylcholine (PC) biosynthesis in freshly isolated hepatocytes. In all nucleated mammalian cells, PC is synthesized from choline via the Kennedy (CDP-choline) pathway. The purpose of our study was to provide direct evidence that AMPK regulate...

متن کامل

Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells.

The metabolic sensor AMP-activated protein kinase (AMPK) regulates several transport proteins, potentially coupling transport activity to cellular stress and energy levels. The creatine transporter (CRT; SLC6A8) mediates creatine uptake into several cell types, including kidney epithelial cells, where it has been proposed that CRT is important for reclamation of filtered creatine, a process cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 287 2  شماره 

صفحات  -

تاریخ انتشار 2001