A polynomiality property for Littlewood-Richardson coefficients
نویسنده
چکیده
We present a polynomiality property of the Littlewood-Richardson coefficients c λμ . The coefficients are shown to be given by polynomials in λ, μ and ν on the cones of the chamber complex of a vector partition function. We give bounds on the degree of the polynomials depending on the maximum allowed number of parts of the partitions λ, μ and ν. We first express the Littlewood-Richardson coefficients as a vector partition function. We then define a hyperplane arrangement from Steinberg’s formula, over whose regions the Littlewood-Richardson coefficients are given by polynomials, and relate this arrangement to the chamber complex of the partition function. As an easy consequence, we get a new proof of the fact that c Nλ Nμ is given by a polynomial in N , which partially establishes the conjecture of King, Tollu and Toumazet [KTT03] that c Nλ Nμ is a polynomial in N with nonnegative rational coefficients. Résumé. Nous présentons une propriété de polynomialité des coefficients de Littlewood-Richardson c λμ . Nous démontrons que ces coefficients sont donnés par des fonctions polynomiales en λ, μ et ν dans les cônes du complexe d’une fonction de partition vectorielle. Nous donnons des bornes sur les degrés de ces polynômes en termes du nombre de parts des partitions λ, μ and ν. Nous exprimons premièrement les coefficients de Littlewood-Richardson en termes d’une fonction de partition vectorielle. Nous définissons ensuite un arrangement d’hyperplans à partir de la formule de Steinberg, sur les régions duquel les coefficients de Littlewood-Richardson sont donnés par des polynômes, puis faisons le lien entre cet arrangement et le complexe de cônes de la fonction de partition vectorielle. Comme conséquence simple, nous obtenons une preuve élémentaire du fait que c Nλ Nμ est donné par un polynôme en N , ce qui établit partiellement une conjecture de King, Tollu et Toumazet [KTT03], voulant que c Nλ Nμ soit un polynôme en N avec des coefficients rationnels nonnégatifs.
منابع مشابه
A max-flow algorithm for positivity of Littlewood-Richardson coefficients
Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group GL(n,C). They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the positivity of Littlewood-Richardson coefficients in polynomial time...
متن کاملGeometric approaches to computing Kostka numbers and Littlewood-Richardson coefficients
Using tools from combinatorics, convex geometry and symplectic geometry, we study the behavior of the Kostka numbers Kλβ and Littlewood-Richardson coefficients cλμ (the type A weight multiplicities and Clebsch-Gordan coefficients). We show that both are given by piecewise polynomial functions in the entries of the partitions and compositions parametrizing them, and that the domains of polynomia...
متن کاملEstimating deep Littlewood-Richardson Coefficients
Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups (GLn). The main results of this paper are: 1. A strongly polynomial randomized approximation scheme for Littlewood-Richardson coefficients corresponding to indices sufficiently far from the boundary of the Littlewood Richardson cone. 2. A proof of approximate log-concav...
متن کاملThe Quantum Cohomology of Flag Varieties and the Periodicity of the Littlewood-richardson Coefficients
We give conditions on a curve class that guarantee the vanishing of the structure constants of the small quantum cohomology of partial flag varieties F (k1, . . . , kr; n) for that class. We show that many of the structure constants of the quantum cohomology of flag varieties can be computed from the image of the evaluation morphism. In fact, we show that a certain class of these structure cons...
متن کاملLittlewood–Richardson polynomials
We introduce a family of rings of symmetric functions depending on an infinite sequence of parameters. A distinguished basis of such a ring is comprised by analogues of the Schur functions. The corresponding structure coefficients are polynomials in the parameters which we call the Littlewood–Richardson polynomials. We give a combinatorial rule for their calculation by modifying an earlier resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 107 شماره
صفحات -
تاریخ انتشار 2004