Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering
نویسندگان
چکیده
Mapping near-field profiles and dynamics of surface plasmon polaritons is crucial for understanding their fundamental optical properties and designing miniaturized photonic devices. This requires a spatial resolution on the sub-wavelength scale because the effective polariton wavelength is shorter than free-space excitation wavelengths. Here by combining total internal reflection excitation with surface-enhanced Raman scattering imaging, we mapped at the sub-wavelength scale the spatial distribution of the dominant perpendicular component of surface plasmon fields in a metal nanoparticle-film system through spectrally selective and polarization-resolved excitation of the vertical gap mode. The lateral field-extension at the junction, which is determined by the gap-mode volume, is small enough to distinguish a spot size ~0.355λ0 generated by a focused radially polarized beam with high reproducibility. The same excitation and imaging schemes are also used to trace near-field nano-focusing and interferences of surface plasmon polaritons created by a variety of plasmon lenses.
منابع مشابه
Detection of Molecular Vibrations of Ciprofloxacin Using Flexible Plasmonic Active Substrates as Surface-Enhanced Raman Scattering (SERS) Biosensors
This article has no abstract.
متن کاملProbing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering
Strongly enhanced and spatially confined near-fields in the vicinity of plasmonic nanostructures open up exciting new capabilities for photon-driven processes and particularly also for optical spectroscopy. Surface enhanced Raman signatures of single molecules can provide us with important information about the optical near-field. We discuss one- and two-photon excited surface enhanced Raman sc...
متن کاملMode-Selective Surface-Enhanced Raman Spectroscopy Using Nanofabricated Plasmonic Dipole Antennas
Mode-selective surface-enhanced Raman spectroscopy (SERS) is demonstrated using plasmonic dipole antennas fabricated with electron beam lithography. An∼10× change of the relative enhancement between two different Raman modes is observed when the resonance frequency of the plasmonic antennas is tuned over the Raman modes by varying the geometrical parameters of the antennas, i.e., changing their...
متن کاملNear-Field Enhanced Plasmonic-Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis
Near-fi eld enhanced bifunctional plasmonic-magnetic (PM) nanostructures consisting of silica nanotubes with embedded solid nanomagnets and uniformly dual-surface-coated plasmonic Ag nanoparticles (NPs) are rationally synthesized. The solid embedded sections of nanotubes provide single-molecule sensitivity with an enhancement factor up to 7.2 × 10 9 for surfaceenhanced Raman scattering (SERS). ...
متن کاملProbing confined phonon modes in individual CdSe nanoplatelets using surface-enhanced Raman scattering.
The phonon modes of individual ultrathin CdSe nanoplatelets are investigated using surface-enhanced Raman scattering in a tightly confined plasmonic geometry. The surface-enhanced Raman scattering spectra, taken on single nanoplatelets sandwiched between a gold nanoparticle and a gold surface, reveal a phonon doublet arising from oscillations perpendicular to and within the platelet plane. The ...
متن کامل