Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation

نویسندگان

  • Fredrik Nielsen
  • Elia Tomás-Pejó
  • Lisbeth Olsson
  • Ola Wallberg
چکیده

BACKGROUND Inhibitors that are generated during thermochemical pretreatment and hydrolysis impair the performance of microorganisms during fermentation of lignocellulosic hydrolysates. In omitting costly detoxification steps, the fermentation process relies extensively on the performance of the fermenting microorganism. One attractive option of improving its performance and tolerance to microbial inhibitors is short-term adaptation during propagation. This study determined the influence of short-term adaptation on the performance of recombinant Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation (SSCF). The aim was to understand how short-term adaptation with lignocellulosic hydrolysate affects the cell mass yield of propagated yeast and performance in subsequent fermentation steps. The physiology of propagated yeast was examined with regard to viability, vitality, stress responses, and upregulation of relevant genes to identify any links between the beneficial traits that are promoted during adaptation and overall ethanol yields in co-fermentation. RESULTS The presence of inhibitors during propagation significantly improved fermentation but lowered cell mass yield during propagation. Xylose utilization of adapted cultures was enhanced by increasing amounts of hydrolysate in the propagation. Ethanol yields improved by over 30 % with inhibitor concentrations that corresponded to ≥2.5 % water-insoluble solids (WIS) load during the propagation compared with the unadapted culture. Adaptation improved cell viability by >10 % and increased vitality by >20 %. Genes that conferred resistance against inhibitors were upregulated with increasing amounts of inhibitors during the propagation, but the adaptive response was not associated with improved ethanol yields in SSCF. The positive effects in SSCF were observed even with adaptation at inhibitor concentrations that corresponded to 2.5 % WIS. Higher amounts of hydrolysate in the propagation feed further improved the fermentation but increased the variability in fermentation outcomes and resulted in up to 20 % loss of cell mass yield. CONCLUSIONS Short-term adaptation during propagation improves the tolerance of inhibitor-resistant yeast strains to inhibitors in lignocellulosic hydrolysates and improves their ethanol yield in fermentation and xylose-fermenting capacity. A low amount of hydrolysate (corresponding to 2.5 % WIS) is optimal, whereas higher amounts decrease cell mass yield during propagation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce

BACKGROUND Simultaneous saccharification and fermentation (SSF) is a promising process option for ethanol production from lignocellulosic materials. However, both the overall ethanol yield and the final ethanol concentration in the fermentation broth must be high. Hence, almost complete conversion of both hexoses and pentoses must be achieved in SSF at a high solid content. A principal difficul...

متن کامل

Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation

BACKGROUND Lignocellulosic bioethanol is expected to play an important role in fossil fuel replacement in the short term. Process integration, improvements in water economy, and increased ethanol titers are key considerations for cost-effective large-scale production. The use of whole steam-pretreated slurries under high dry matter (DM) conditions and conversion of all fermentable sugars offer ...

متن کامل

Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms.

Simultaneous saccharification and co-fermentation (SSCF) of waste paper sludge to ethanol was investigated using two recombinant xylose-fermenting microbes: Zymomonas mobilis 8b and Saccharomyces cerevisiae RWB222. S. cerevisiae RWB222 produced over 40 g/L ethanol with a yield of 0.39 g ethanol/g carbohydrate on paper sludge at 37 degrees C, while similar titers and yields were achieved by Z. m...

متن کامل

Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw

BACKGROUND Pretreatment is an important step in the production of ethanol from lignocellulosic material. Using acetic acid together with steam pretreatment allows the positive effects of an acid catalyst to be retained, while avoiding the negative environmental effects associated with sulphuric acid. Acetic acid is also formed during the pretreatment and hydrolysis of hemicellulose, and is a kn...

متن کامل

Simultaneous saccharification and fermentation of ground corn stover for the production of fuel ethanol using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011.

Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015