Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations.
نویسندگان
چکیده
CFTR, the ABC protein defective in cystic fibrosis, functions as an anion channel. Once phosphorylated by protein kinase A, a CFTR channel is opened and closed by events at its two cytosolic nucleotide binding domains (NBDs). Formation of a head-to-tail NBD1/NBD2 heterodimer, by ATP binding in two interfacial composite sites between conserved Walker A and B motifs of one NBD and the ABC-specific signature sequence of the other, has been proposed to trigger channel opening. ATP hydrolysis at the only catalytically competent interfacial site is suggested to then destabilize the NBD dimer and prompt channel closure. But this gating mechanism, and how tightly CFTR channel opening and closing are coupled to its catalytic cycle, remains controversial. Here we determine the distributions of open burst durations of individual CFTR channels, and use maximum likelihood to evaluate fits to equilibrium and nonequilibrium mechanisms and estimate the rate constants that govern channel closure. We examine partially and fully phosphorylated wild-type CFTR channels, and two mutant CFTR channels, each bearing a deleterious mutation in one or other composite ATP binding site. We show that the wild-type CFTR channel gating cycle is essentially irreversible and tightly coupled to the ATPase cycle, and that this coupling is completely destroyed by the NBD2 Walker B mutation D1370N but only partially disrupted by the NBD1 Walker A mutation K464A.
منابع مشابه
Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation
Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette (ABC) protein superfamily. Unlike most other ABC proteins that function as active transporters, CFTR is an ATP-gated chloride channel. The opening of CFTR's gate is associated with ATP-induced dimerization o...
متن کاملGating scheme for single GABA-activated Cl- channels determined from stability plots, dwell-time distributions, and adjacent-interval durations.
To study the gating of a GABA-activated Cl- channel, currents from single channels activated by 1.0 microM GABA were examined in patches of membrane excised from cultured chick cerebral neurons. The distributions of open and shut interval durations were each described by the sum of 3 exponential components, suggesting that the channel normally enters at least 3 open and 3 shut states. Five diff...
متن کاملOn the Mechanism of MgATP-dependent Gating of CFTR Cl− Channels
CFTR, the product of the gene mutated in cystic fibrosis, is an ATPase that functions as a Cl(-) channel in which bursts of openings separate relatively long interburst closed times (tauib). Channel gating is controlled by phosphorylation and MgATP, but the underlying molecular mechanisms remain controversial. To investigate them, we expressed CFTR channels in Xenopus oocytes and examined, in e...
متن کاملProlonged Nonhydrolytic Interaction of Nucleotide with CFTR's NH2-terminal Nucleotide Binding Domain and its Role in Channel Gating
CFTR, the protein defective in cystic fibrosis, functions as a Cl- channel regulated by cAMP-dependent protein kinase (PKA). CFTR is also an ATPase, comprising two nucleotide-binding domains (NBDs) thought to bind and hydrolyze ATP. In hydrolyzable nucleoside triphosphates, PKA-phosphorylated CFTR channels open into bursts, lasting on the order of a second, from closed (interburst) intervals of...
متن کاملElectrostatic Control and Chloride Regulation of the Fast Gating of ClC-0 Chloride Channels
The opening and closing of chloride (Cl-) channels in the ClC family are thought to tightly couple to ion permeation through the channel pore. In the prototype channel of the family, the ClC-0 channel from the Torpedo electric organ, the opening-closing of the pore in the millisecond time range known as "fast gating" is regulated by both external and internal Cl- ions. Although the external Cl-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 3 شماره
صفحات -
تاریخ انتشار 2010