Optimal Selection of the Ca-cfar Adjustment Factor for K Power Sea Clutter with Statistical Variations Selección Óptima Del Factor De Ajuste Ca-cfar Para Clutter Marino De Potencia K Estadísticamente Variable

نویسندگان

  • José Raúl Machado Fernández
  • Jesús C. Bacallao Vidal
چکیده

The presence of the sea clutter interfering signal sets limitations on the quality of radar detection in coastal and ocean environments. The CA-CFAR processor is the classic solution for detecting radar targets. It usually operates keeping constant its adjustment factor during the entire operation period. As a consequence, the scheme does not take into account the slow statistical variations of the background signal when performing the clutter discrimination. To solve this problem, the authors conducted an intensive processing of 40 million computergenerated clutter power samples in MATLAB. As a result, they found the optimal adjustment factor values to be applied in 40 possible clutter statistical states, suggesting thus the use of the CA-CFAR architecture with a variable adjustment factor. In addition, a curve fitting procedure was performed, obtaining mathematical expressions that generalize the results for the whole 1. Ingeniero en Telecomunicaciones y Electrónica, Doctorante, Profesor e Investigador, Grupo de Investigación de Radares, Departamento de Telecomunicaciones y Telemática, Facultad de Eléctrica, Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE), La Habana, Cuba, [email protected] 2. Ingeniero Eléctrico, Doctor en Ciencias Técnicas, Profesor Titular e Investigador, 2do Jefe del Grupo de Investigación de Radares, Departamento de Telecomunicaciones y Telemática, Facultad de Eléctrica, Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE), La Habana, Cuba, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive CFAR Detection for Clutter-Edge Heterogeneity Using Bayesian Inference

Reliable radar constant false alarm rate (CFAR) detection is critical in dynamic clutter and jamming scenarios [2]. The existence of heterogeneities in practical operational environments renders the conventional cell averaging CFAR (CA-CFAR) ineffective. Heterogeneities arise due to the presence of multiple targets and clutter edges [3]. Alternative schemes have been developed to address this i...

متن کامل

CFAR Detection from Noncoherent Radar Echoes Using Bayesian Theory

We propose a new constant false alarm rate (CFAR) detection method from noncoherent radar echoes, considering heterogeneous sea clutter. It applies the Bayesian theory for adaptive estimation of the local clutter statistical distribution in the cell under test. The detection technique can be readily implemented in existing noncoherent marine radar systems, which makes it particularly attractive...

متن کامل

Modified Anderson-Darling Test-Based Target Detector in Non-Homogenous Environments

A constant false alarm rate (CFAR) target detector in non-homogenous backgrounds is proposed. Based on K-sample Anderson-Darling (AD) tests, the method re-arranges the reference cells by merging homogenous sub-blocks surrounding the cell under test (CUT) into a new reference window to estimate the background statistics. Double partition test, clutter edge refinement and outlier elimination are ...

متن کامل

A CFAR Circuit of Detecting Spatially Correlated Target for Automotive UWB Radars

Automotive radars for potential accident reduction and for autonomous cruse control were available in 1999, and 77 GHz long-range radars and 24 GHz short-range radars are developing [1]. 79-GHz shortrange automotive radars have a bandwidth of 4 GHz, a maximum range of 30 m, and a range resolution of 5 cm. Radar reception signals often contain unwanted echoes, called “radar clutter.” Moving targ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017