The cerebellum does more than sensory prediction error-based learning in sensorimotor adaptation tasks.

نویسندگان

  • Peter A Butcher
  • Richard B Ivry
  • Sheng-Han Kuo
  • David Rydz
  • John W Krakauer
  • Jordan A Taylor
چکیده

Individuals with damage to the cerebellum perform poorly in sensorimotor adaptation paradigms. This deficit has been attributed to impairment in sensory prediction error-based updating of an internal forward model, a form of implicit learning. These individuals can, however, successfully counter a perturbation when instructed with an explicit aiming strategy. This successful use of an instructed aiming strategy presents a paradox: In adaptation tasks, why do individuals with cerebellar damage not come up with an aiming solution on their own to compensate for their implicit learning deficit? To explore this question, we employed a variant of a visuomotor rotation task in which, before executing a movement on each trial, the participants verbally reported their intended aiming location. Compared with healthy control participants, participants with spinocerebellar ataxia displayed impairments in both implicit learning and aiming. This was observed when the visuomotor rotation was introduced abruptly (experiment 1) or gradually (experiment 2). This dual deficit does not appear to be related to the increased movement variance associated with ataxia: Healthy undergraduates showed little change in implicit learning or aiming when their movement feedback was artificially manipulated to produce similar levels of variability (experiment 3). Taken together the results indicate that a consequence of cerebellar dysfunction is not only impaired sensory prediction error-based learning but also a difficulty in developing and/or maintaining an aiming solution in response to a visuomotor perturbation. We suggest that this dual deficit can be explained by the cerebellum forming part of a network that learns and maintains action-outcome associations across trials.NEW & NOTEWORTHY Individuals with cerebellar pathology are impaired in sensorimotor adaptation. This deficit has been attributed to an impairment in error-based learning, specifically, from a deficit in using sensory prediction errors to update an internal model. Here we show that these individuals also have difficulty in discovering an aiming solution to overcome their adaptation deficit, suggesting a new role for the cerebellum in sensorimotor adaptation tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics of Implicit Sensorimotor Adaptation Revealed by Task-irrelevant Clamped Feedback

Sensorimotor adaptation occurs when there is a discrepancy between the expected and actual sensory consequences of a movement. This learning can be precisely measured, but its source has been hard to pin down because standard adaptation tasks introduce two potential learning signals: task performance errors and sensory prediction errors. Here we employed a new method that induces sensory predic...

متن کامل

Understanding sensorimotor adaptation and learning for rehabilitation.

PURPOSE OF REVIEW Understanding the behavioral mechanisms of sensorimotor adaptation and learning is essential for designing rational rehabilitation interventions. RECENT FINDINGS Adaptation is the trial-and-error process of adjusting movement to new demands and is now thought to be more than a simple error cancellation process. Instead, it may calibrate the brain's prediction of how the body...

متن کامل

Sensorimotor Recalibration Depends on Attribution of Sensory Prediction Errors to Internal Causes

Sensorimotor learning critically depends on error signals. Learning usually tries to minimise these error signals to guarantee optimal performance. Errors can, however, have both internal causes, resulting from one's sensorimotor system, and external causes, resulting from external disturbances. Does learning take into account the perceived cause of error information? Here, we investigated the ...

متن کامل

Sensory prediction errors drive cerebellum-dependent adaptation of reaching.

The cerebellum is an essential part of the neural network involved in adapting goal-directed arm movements. This adaptation might rely on two distinct signals: a sensory prediction error or a motor correction. Sensory prediction errors occur when an initial motor command is generated but the predicted sensory consequences do not match the observed values. In some tasks, these sensory errors are...

متن کامل

Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation

Neurophysiological and neuroimaging work suggests that the cerebellum is critically involved in sensorimotor adaptation. Changes in cerebellar function alter behaviour when compensating for sensorimotor perturbations, as shown by non-invasive stimulation of the cerebellum and studies involving patients with cerebellar degeneration. It is known, however, that behavioural responses to sensorimoto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 118 3  شماره 

صفحات  -

تاریخ انتشار 2017