Optimal Learning in Linear Regression with Combinatorial Feature Selection

نویسندگان

  • Bin Han
  • Ilya O. Ryzhov
  • Boris Defourny
چکیده

Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Budget constrained non-monotonic feature selection

Feature selection is an important problem in machine learning and data mining. We consider the problem of selecting features under the budget constraint on the feature subset size. Traditional feature selection methods suffer from the "monotonic" property. That is, if a feature is selected when the number of specified features is set, it will always be chosen when the number of specified featur...

متن کامل

High-dimensional classification by sparse logistic regression

We consider high-dimensional binary classification by sparse logistic regression. We propose a model/feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the non-asymptotic bounds for the resulting misclassification excess risk. The bounds can be reduced under the additional low-noise condition. The proposed complexity penalty ...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

سودمندی رگرسیون‌های تجمیعی و روش‌های انتخاب متغیرهای پیش‌بین بهینه در پیش‌بینی بازده سهام

مقاله حاضر به بررسی سودمندی رگرسیون‌های تجمیعی و روش‌های انتخاب متغیرهای پیش‌بین بهینه (شامل روش مبتنی بر همبستگی و ریلیف) برای پیش‌بینی بازده سهام شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران می‌پردازد. به‌منظور ارزیابی عملکرد رگرسیون تجمیعی، معیارهای ارزیابی (شامل میانگین قدرمطلق درصد خطا، مجذور مربع میانگین خطا و ضریب تعیین) مربوط به پیش‌بینی این روش، با رگرسیون خطی و شبکه‌های عصبی مصنوعی...

متن کامل

Comprehensive causal analysis of occupational accidents’ severity in the chemical industries; A field study based on feature selection and multiple linear regression techniques

Introduction: The causal analysis of occupational accidents’ severity in the chemical industries may improve safety design programs in these industries. This comprehensive study was implemented to analyze the factors affecting occupational accidents’ severity in the chemical industries. Methods and Materials: An analytical study was conducted in 22 chemical industries during 2016-2017. The stu...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2016