Replication terminator protein-based replication fork-arrest systems in various Bacillus species.
نویسندگان
چکیده
The replication terminator protein (RTP) of Bacillus subtilis interacts with its cognate DNA terminators to cause replication fork arrest, thereby ensuring that the forks approaching one another at the conclusion of a round of replication meet within a restricted terminus region. A similar situation exists in Escherichia coli, but it appears that the fork-arrest systems in these two organisms have evolved independently of one another. In the present work, RTP homologs in four species closely related to B. subtilis (B. atrophaeus, B. amyloliquefaciens, B. mojavensis, and B. vallismortis) have been identified and characterized. An RTP homolog could not be identified in another closely related species, B. licheniformis. The nucleotide and amino acid changes from B. subtilis among the four homologs are consistent with the recently established phylogenetic tree for these species. The GC contents of the rtp genes raise the possibility that these organisms arose within this branch of the tree by horizontal transfer into a common ancestor after their divergence from B. licheniformis. Only 5 amino acid residue positions were changed among the four homologs, despite an up to 17.2% change in the nucleotide sequence, a finding that highlights the importance of the precise folded structure to the functioning of RTP. The absence of any significant change in the proposed DNA-binding region of RTP emphasizes the importance of its high affinity for the DNA terminator in its functioning. By coincidence, the single change (E30K) found in the B. mojavensis RTP corresponds exactly to that purposefully introduced by others into B. subtilis RTP to implicate a crucial role for E30 in the fork-arrest mechanism. The natural occurrence of this variant is difficult to reconcile with such an implication, and it was shown directly that RTP.E30K functions normally in fork arrest in B. subtilis in vivo. Additional DNA terminators were identified in the new RTP homolog-containing strains, allowing the definition of a Bacillus terminator consensus and identification of two more terminators in the B. subtilis 168 genome sequence to bring the total to nine.
منابع مشابه
Mechanistic studies on the impact of transcription on sequence-specific termination of DNA replication and vice versa.
Since DNA replication and transcription often temporally and spatially overlap each other, the impact of one process on the other is of considerable interest. We have reported previously that transcription is impeded at the replication termini of Escherichia coli and Bacillus subtilis in a polar mode and that, when transcription is allowed to invade a replication terminus from the permissive di...
متن کاملSearch for additional replication terminators in the Bacillus subtilis 168 chromosome.
The Bacillus subtilis 168 chromosome is known to contain at least six DNA replication terminators in the terminus region of the chromosome. By using a degenerate DNA probe for the consensus terminator sequence and low-stringency hybridization conditions, several additional minor hybridizing bands were identified. DNA corresponding to the most intense of these bands was cloned and characterized....
متن کاملHelicase–Contrahelicase Interaction and the Mechanism of Termination of DNA Replication
Termination of DNA replication at a sequence-specific replication terminus is potentiated by the binding of the replication terminator protein (RTP) to the terminus sequence, causing polar arrest of the replicative helicase (contrahelicase activity). Two alternative models have been proposed to explain the mechanism of replication fork arrest. In the first model, the RTP-terminus DNA interactio...
متن کاملNucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis.
How bacteria respond to chromosome replication stress has been traditionally studied using temperature-sensitive mutants and chemical inhibitors. These methods inevitably arrest all replication and lead to induction of transcriptional responses and inhibition of cell division. Here, we used repressor proteins bound to operator arrays to generate a single stalled replication fork. These replicat...
متن کاملswi1- and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe.
Replication forks are arrested at specific sequences to facilitate a variety of DNA transactions. Forks also stall at sites of DNA damage, and the regression of stalled forks without rescue can cause genetic instability. Therefore, unraveling the mechanisms of fork arrest and of rescue of stalled forks is of considerable general interest. In Schizosaccharomyces pombe, products of two mating-typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 180 13 شماره
صفحات -
تاریخ انتشار 1998