Unsupervised host behavior classification from connection patterns

نویسندگان

  • Guillaume Dewaele
  • Yosuke Himura
  • Pierre Borgnat
  • Kensuke Fukuda
  • Patrice Abry
  • Olivier J. J. Michel
  • Romain Fontugne
  • Kenjiro Cho
  • Hiroshi Esaki
چکیده

Laboratoire de Physique de l’ENS de Lyon, CNRS UMR 5672, ENSL, Lyon, France Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan National Institute of Informatics/PRESTO, JST, Tokyo, Japan Gipsa-lab, CNRS UMR 5216, Saint Martin d’Hères, France National Institute of Informatics, Graduate University for Advanced Studies, Tokyo, Japan Internet Initiative Japan, Tokyo, Japan

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

طبقه بندی و شناسایی رخساره‌های زمین‌شناسی با استفاده از داده‌های لرزه نگاری و شبکه‌های عصبی رقابتی

Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...

متن کامل

Assessing Behavioral Patterns of Motorcyclists Based on Traffic Control Device at City Intersections by Classification Tree Algorithm

According to the forensic statistics, in Iran, 26 percent of those killed in traffic accidents are motorcyclists in recent years. Thus, it is necessary to investigate the causes of motorcycle accidents because of the high number of motorcyclist casualties. Motorcyclists' dangerous behaviors are among the causes of events that are discussed in this study. Traffic signs have the important role of...

متن کامل

Extracting Phrase Patterns with Minimum Redundancy for Unsupervised Speaker Role Classification

This paper addresses the problem of learning phrase patterns for unsupervised speaker role classification. Phrase patterns are automatically extracted from large corpora, and redundant patterns are removed via a graph pruning algorithm. In experiments on English and Mandarin talk shows, the use of phrase patterns results in an increase of role classification accuracy over n-gram lexical feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. Journal of Network Management

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010