Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression.

نویسندگان

  • H Ma
  • D Botstein
چکیده

Saccharomyces cerevisiae has two homologous hexokinases, I and II; they are 78% identical at the amino acid level. Either enzyme allows yeast cells to ferment fructose. Mutant strains without any hexokinase can still grow on glucose by using a third enzyme, glucokinase. Hexokinase II has been implicated in the control of catabolite repression in yeasts. We constructed null mutations in both hexokinase genes, HXK1 and HXK2, and studied their effect on the fermentation of fructose and on catabolite repression of three different genes in yeasts: SUC2, CYC1, and GAL10. The results indicate that hxk1 or hxk2 single null mutants can ferment fructose but that hxk1 hxk2 double mutants cannot. The hxk2 single mutant, as well as the double mutant, failed to show catabolite repression in all three systems, while the hxk1 null mutation had little or no effect on catabolite repression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2.

In the yeast Saccharomyces cerevisiae, glucose or fructose represses the expression of a large number of genes. The phosphorylation of glucose or fructose is catalysed by hexokinase PI (Hxk1), hexokinase PII (Hxk2) and a specific glucokinase (Glk1). The authors have shown previously that either Hxk1 or Hxk2 is sufficient for a rapid, sugar-induced disappearance of catabolite-repressible mRNAs (...

متن کامل

Saccharomyces cerevisiae null mutants in glucose phosphorylation: metabolism and invertase expression.

A congenic series of Saccharomyces cerevisiae strains has been constructed which carry, in all combinations, null mutations in the three genes for glucose phosphorylation: HXK1, HXK2 and GLK1, coding hexokinase 1 (also called PI or A), hexokinase 2 (PII or B), and glucokinase, respectively: i.e., eight strains, all of which grow on glucose except for the triple mutant. All or several of the str...

متن کامل

Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae.

We have isolated a second gene (MLS1), which in addition to DAL7, encodes malate synthase from S. cerevisiae. Expression of the two genes is specific for their physiological roles in carbon and nitrogen metabolism. Expression of MLS1, which participates in the utilization of non-fermentable carbon sources, is sensitive to carbon catabolite repression, but nearly insensitive to nitrogen cataboli...

متن کامل

Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling.

The role of hexose phosphorylating enzymes in the signaling of carbon catabolite repression was investigated in the filamentous fungus Aspergillus nidulans. A d-fructose non-utilizing, hexokinase-deficient (hxkA1, formerly designated frA1) strain was utilized to obtain new mutants lacking either glucokinase (glkA4) or both hexose kinases (hxkA1/glkA4). d-Glucose and d-fructose phosphorylation i...

متن کامل

Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae

BACKGROUND Considerable interest in the bioconversion of lignocellulosic biomass into ethanol has led to metabolic engineering of Saccharomyces cerevisiae for fermentation of xylose. In the present study, the transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with those of glucose-grown cells both in glucose represse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 1986