Single-molecule enzymology à la Michaelis-Menten.
نویسندگان
چکیده
Over the past 100 years, deterministic rate equations have been successfully used to infer enzyme-catalysed reaction mechanisms and to estimate rate constants from reaction kinetics experiments conducted in vitro. In recent years, sophisticated experimental techniques have been developed that begin to allow the measurement of enzyme-catalysed and other biopolymer-mediated reactions inside single cells at the single-molecule level. Time-course data obtained using these methods are considerably noisy because molecule numbers within cells are typically quite small. As a consequence, the interpretation and analysis of single-cell data requires stochastic methods, rather than deterministic rate equations. Here, we concisely review both experimental and theoretical techniques that enable single-molecule analysis, with particular emphasis on the major developments in the field of theoretical stochastic enzyme kinetics, from its inception in the mid-20th century to its modern-day status. We discuss the differences between stochastic and deterministic rate equation models, how these depend on enzyme molecule numbers and substrate inflow into the reaction compartment, and how estimation of rate constants from single-cell data is possible using recently developed stochastic approaches.
منابع مشابه
Single-Molecule Approach to Enzymology
Recent advances in single-molecule enzymology are reviewed. The theoretical underpinning of sincle-molecule enzymatic behaviors is discussed and exemplified by experiements and statistical analyses. In particular, the manifestations of the Michaelis-Menten mechanism, the kinetic scheme with sequential intermediates, and dynamic disorder in single molecule data are presented. A survey of current...
متن کاملFluctuating enzymes: lessons from single-molecule studies.
Recent single-molecule enzymology measurements with improved statistics have demonstrated that a single enzyme molecule exhibits large temporal fluctuations of the turnover rate constant at a broad range of time scales (from 1 ms to 100 s). The rate constant fluctuations, termed as dynamic disorder, are associated with fluctuations of the protein conformations observed on the same time scales. ...
متن کاملSingle-molecule Michaelis-Menten equations.
This paper summarizes our present theoretical understanding of single-molecule kinetics associated with the Michaelis-Menten mechanism of enzymatic reactions. Single-molecule enzymatic turnover experiments typically measure the probability density f(t) of the stochastic waiting time t for individual turnovers. While f(t) can be reconciled with ensemble kinetics, it contains more information tha...
متن کاملThe original Michaelis constant: translation of the 1913 Michaelis-Menten paper.
Nearly 100 years ago Michaelis and Menten published their now classic paper [Michaelis, L., and Menten, M. L. (1913) Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333-369] in which they showed that the rate of an enzyme-catalyzed reaction is proportional to the concentration of the enzyme-substrate complex predicted by the Michaelis-Menten equation. Because the original text was written in G...
متن کاملMichaelis-Menten equation and detailed balance in enzymatic networks.
Many enzymatic reactions in biochemistry are far more complex than the celebrated Michaelis-Menten scheme, but the observed turnover rate often obeys the hyperbolic dependence on the substrate concentration, a relation established almost a century ago for the simple Michaelis-Menten mechanism. To resolve the longstanding puzzle, we apply the flux balance method to predict the functional form of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The FEBS journal
دوره 281 2 شماره
صفحات -
تاریخ انتشار 2014