Second Class Particles and Cube Root Asymptotics for Hammersley’s Process by Eric Cator

نویسنده

  • PIET GROENEBOOM
چکیده

We show that, for a stationary version of Hammersley’s process, with Poisson sources on the positive x-axis and Poisson sinks on the positive y-axis, the variance of the length of a longest weakly North–East path L(t, t) from (0,0) to (t, t) is equal to 2E(t −X(t))+, where X(t) is the location of a second class particle at time t . This implies that both E(t −X(t))+ and the variance of L(t, t) are of order t2/3. Proofs are based on the relation between the flux and the path of a second class particle, continuing the approach of Cator and Groeneboom [Ann. Probab. 33 (2005) 879–903].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second class particles and cube root asymptotics for Hammersley's process

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive...

متن کامل

ar X iv : m at h / 06 03 34 5 v 1 [ m at h . PR ] 1 4 M ar 2 00 6 Second class particles and cube root asymptotics for Hammersley ’ s process

We show that, for a stationary version of Hammersley's process, with Poisson sources on the positive x-axis and Poisson sinks on the positive y-axis, the variance of the length of a longest weakly NorthEast path L(t, t) from (0, 0) to (t, t) is equal to 2E(t − X(t)) + , where X(t) is the location of a second class particle at time t. This implies that both E(t − X(t)) + and the variance of L(t,...

متن کامل

Behavior of a second class particle in Hammersley’s process

In the case of a rarefaction fan in a non-stationary Hammersley process, we explicitly calculate the asymptotic behavior of the process as we move out along a ray, and the asymptotic distribution of the angle within the rarefaction fan of a second class particle and a dual second class particle. Furthermore, we consider a stationary Hammersley process and use the previous results to show that t...

متن کامل

Behavior of a second class particle and its dual in Hammersley’s process

In the case of a rarefaction fan in a non-stationary Hammersley process, we explicitly calculate the asymptotic behavior of the process as we move out along a ray, and the asymptotic distribution of the angle within the rarefaction fan of a second class particle and a dual second class particle. Furthermore, we show that a second class particle and a dual second class particle touch with probab...

متن کامل

Hammersley’s Process with Sources and Sinks by Eric Cator

We show that, for a stationary version of Hammersley’s process, with Poisson “sources” on the positive x-axis, and Poisson “sinks” on the positive y-axis, an isolated second-class particle, located at the origin at time zero, moves asymptotically, with probability 1, along the characteristic of a conservation equation for Hammersley’s process. This allows us to show that Hammersley’s process wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006