Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability.
نویسندگان
چکیده
Certain inhaled chemicals, such as reactive, water-soluble gases, are readily absorbed by the nasal mucosa upon inhalation and may cause damage to the nasal epithelium. Comparisons of the spatial distribution of nasal lesions in laboratory animals exposed to formaldehyde with gas uptake rates predicted by computational models reveal that lesions usually occur in regions of the susceptible epithelium where gas absorption is highest. Since the uptake patterns are influenced by air currents in the nose, interindividual variability in nasal anatomy and ventilation rates due to age, body size, and gender will affect the patterns of gas absorption in humans, potentially putting some age groups at higher risk when exposed to toxic gases. In this study, interhuman variability in the nasal dosimetry of reactive, water-soluble gases was investigated by means of computational fluid dynamics (CFD) models in 5 adults and 2 children, aged 7 and 8 years old. Airflow patterns were investigated for allometrically scaled inhalation rates corresponding to resting breathing. The spatial distribution of uptake at the airway walls was predicted to be nonuniform, with most of the gas being absorbed in the anterior portion of the nasal passages. Under the conditions of these simulations, interhuman variability in dose to the whole nose (mass per time per nasal surface area) due to differences in anatomy and ventilation was predicted to be 1.6-fold among the 7 individuals studied. Children and adults displayed very similar patterns of nasal gas uptake; no significant differences were noted between the two age groups.
منابع مشابه
The use of nasal dosimetry models in the risk assessment of inhaled gases.
Nasal dosimetry models, including physiologically based pharmacokinetic (PBPK) models, computational fluid dynamics (CFD) models, and hybrid CFD-PBPK models, have played a prominent role in inhalation toxicology and the risk assessment of inhaled gases. Although different in their approach, their goals are similar: to accurately describe tissue dosimetry of inhaled gases in an anatomically accu...
متن کاملFreeze-dried k-carrageenan/chitosan polyelectrolyte complex-based insert: a novel intranasal delivery system for sumatriptan succinate
Intranasal route, ensuring suitable bioavailability of medicines under circumvention of the gastrointestinal degradation and hepatic first-pass elimination, has been a popular choice for drug delivery. Among nasal dosage forms, mucoadhesive solid inserts have been shown to resist mucociliary clearance and provide a prolonged nasal residence time. Hence, the purpose of this study was the prepara...
متن کاملFreeze-dried k-carrageenan/chitosan polyelectrolyte complex-based insert: a novel intranasal delivery system for sumatriptan succinate
Intranasal route, ensuring suitable bioavailability of medicines under circumvention of the gastrointestinal degradation and hepatic first-pass elimination, has been a popular choice for drug delivery. Among nasal dosage forms, mucoadhesive solid inserts have been shown to resist mucociliary clearance and provide a prolonged nasal residence time. Hence, the purpose of this study was the prepara...
متن کاملMass transport analysis: inhalation rfc methods framework for interspecies dosimetric adjustment.
In 1994, the U.S. Environmental Protection Agency introduced dosimetry modeling into the methods used to derive an inhalation reference concentration (RfC). The type of dosimetric adjustment factor (DAF) applied had to span the range of physicochemical characteristics of the gases listed on the Clean Air Act Amendments in 1991 as hazardous air pollutants (HAPs) and accommodate differences in av...
متن کاملAirflow, gas deposition, and lesion distribution in the nasal passages.
The nasal passages of laboratory animals and man are complex, and lesions induced in the delicate nasal lining by inhaled air pollutants vary considerably in location and nature. The distribution of nasal lesions is generally a consequence of regional deposition of the inhaled material, local tissue susceptibility, or a combination of these factors. Nasal uptake and regional deposition are are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inhalation toxicology
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2009