QoR-Aware Power Capping for Approximate Big Data Processing
نویسندگان
چکیده
To limit the peak power consumption of a cluster, a centralized power capping system typically assigns power caps to the individual servers, which are then enforced using local capping controllers. Consequently, the performance and throughput of the servers are affected, and the runtime of jobs is extended as a result. We observe that servers in big data processing clusters often execute big data applications that have different tolerance for approximate results. To mitigate the impact of power capping, we propose a new power-Capping aware resource manager for Approximate Big data processing (CAB) that takes into consideration the minimum Quality-ofResult (QoR) of the jobs. We use industry-standard feedback power capping controllers to enforce a power cap quickly, while, simultaneously modifying the resource allocations to various jobs based on their progress rate, target minimum QoR, and the power cap such that the impact of capping on runtime is minimized. Based on the applied cap and the progress rates of jobs, CAB dynamically allocates the computing resources (i.e., number of cores and memory) to the jobs to mitigate the impact of capping on the finish time. We implement CAB in Hadoop2.7.3 and evaluate its improvement over other methods on a state-of-the-art 28-core Xeon server. We demonstrate that CAB minimizes the impact of power capping on runtime by up to 39.4% while meeting the minimum QoR constraints.
منابع مشابه
Reliability-Aware Optimization of Approximate Computational Kernels with Rely
Emerging high-performance architectures are anticipated to contain unreliable components (e.g., ALUs) that offer low power consumption at the expense of soft errors. Some applications (such as multimedia processing, machine learning, and big data analytics) can often naturally tolerate soft errors and can therefore trade accuracy of their results for reduced energy consumption by utilizing thes...
متن کاملImprecise Minority-Based Full Adder for Approximate Computing Using CNFETs
Nowadays, the portable multimedia electronic devices, which employ signal-processing modules, require power aware structures more than ever. For the applications associating with human senses, approximate arithmetic circuits can be considered to improve performance and power efficiency. On the other hand, scaling has led to some limitations in performance of nanoscale circuits. According...
متن کاملAn Effective Path-aware Approach for Keyword Search over Data Graphs
Abstract—Keyword Search is known as a user-friendly alternative for structured languages to retrieve information from graph-structured data. Efficient retrieving of relevant answers to a keyword query and effective ranking of these answers according to their relevance are two main challenges in the keyword search over graph-structured data. In this paper, a novel scoring function is proposed, w...
متن کاملDRain: An Engine for Quality-of-Result Driven Process-Based Data Analytics
The analysis of massive amounts of diverse data provided by large cities, combined with the requirements from multiple domain experts and users, is becoming a challenging trend. Although current process-based solutions rise in data awareness, there is less coverage of approaches dealing with the Quality-of-Result (QoR) to assist data analytics in distributed data-intensive environments. In this...
متن کاملPCAP: Performance-aware Power Capping for the Disk Drive in the Cloud
Power efficiency is pressing in today’s cloud systems. Datacenter architects are responding with various strategies, including capping the power available to computing systems. Throttling bandwidth has been proposed to cap the power usage of the disk drive. This work revisits throttling and addresses its shortcomings. We show that, contrary to the common belief, the disk’s power usage does not ...
متن کامل