Complex Question Answering: Unsupervised Learning Approaches and Experiments
نویسندگان
چکیده
Complex questions that require inferencing and synthesizing information from multiple documents can be seen as a kind of topic-oriented, informative multi-document summarization where the goal is to produce a single text as a compressed version of a set of documents with a minimum loss of relevant information. In this paper, we experiment with one empirical method and two unsupervised statistical machine learning techniques: K-means and Expectation Maximization (EM), for computing relative importance of the sentences. We compare the results of these approaches. Our experiments show that the empirical approach outperforms the other two techniques and EM performs better than K-means. However, the performance of these approaches depends entirely on the feature set used and the weighting of these features. In order to measure the importance and relevance to the user query we extract different kinds of features (i.e. lexical, lexical semantic, cosine similarity, basic element, tree kernel based syntactic and shallow-semantic) for each of the document sentences. We use a local search technique to learn the weights of the features. To the best of our knowledge, no study has used tree kernel functions to encode syntactic/semantic information for more complex tasks such as computing the relatedness between the query sentences and the document sentences in order to generate query-focused summaries (or answers to complex questions). For each of our methods of generating summaries (i.e. empirical, K-means and EM) we show the effects of syntactic and shallow-semantic features over the bag-of-words (BOW) features.
منابع مشابه
Leveraging Term Banks for Answering Complex Questions: A Case for Sparse Vectors
While open-domain question answering (QA) systems have proven effective for answering simple questions, they struggle with more complex questions. Our goal is to answer more complex questions reliably, without incurring a significant cost in knowledge resource construction to support the QA. One readily available knowledge resource is a term bank, enumerating the key concepts in a domain. We ha...
متن کاملUnsupervised Relation Learning for Event-Focused Question-Answering and Domain Modelling
Unsupervised Relation Learning for Event-Focused Question-Answering and Domain Modelling
متن کاملOptimization of Text Classification Using Supervised and Unsupervised Learning Approach
Text Classification, also known as text categorization, is the task of automatically allocating unlabeled documents into predefined categories. Text Classification means allocating a document to one or more categories or classes. The ability to accurately perform a classification task depends on the representations of documents to be classified. Text representations transform the textural docum...
متن کاملLearning Unsupervised SVM Classifier for Answer Selection in Web Question Answering
Previous machine learning techniques for answer selection in question answering (QA) have required question-answer training pairs. It has been too expensive and labor-intensive, however, to collect these training pairs. This paper presents a novel unsupervised support vector machine (USVM) classifier for answer selection, which is independent of language and does not require hand-tagged trainin...
متن کاملCompherensive Review Of Text Classification Using Machine Learning
Text Classification, also known as text categorization, is the task of automatically allocating unlabeled documents into predefined categories. Text Classification means allocating a document to one or more categories or classes. The ability to accurately perform a classification task depends on the representations of documents to be classified. Text representations transform the textural docum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Artif. Intell. Res.
دوره 35 شماره
صفحات -
تاریخ انتشار 2009