e-QRAQ: A Multi-turn Reasoning Dataset and Simulator with Explanations
نویسندگان
چکیده
In this paper we present a new dataset and simulator e-QRAQ (explainable Query, Reason, and Answer Question) in which a User simulator provides an Agent with a short, ambiguous story and a challenge question about the story. The story is ambiguous because some of the entities have been replaced by variables. At each turn the Agent may ask for the value of a variable or try to answer the challenge question. In response the User simulator provides a natural language explanation of why the Agent’s query or answer was useful in narrowing down the set of possible answers, or not. To demonstrate one potential application of the e-QRAQ dataset, we train a new neural architecture based on End-to-End Memory Networks to successfully generate both predictions and partial explanations of its current understanding of the problem. We observe a strong correlation between the quality of the prediction and explanation.
منابع مشابه
Learning to Query, Reason, and Answer Questions On Ambiguous Texts
A key goal of research in conversational systems is to train an interactive agent to help a user with a task. Human conversation, however, is notoriously incomplete, ambiguous, and full of extraneous detail. To operate effectively, the agent must not only understand what was explicitly conveyed but also be able to reason in the presence of missing or unclear information. When unable to resolve ...
متن کاملVQA-E: Explaining, Elaborating, and Enhancing Your Answers for Visual Questions
Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-...
متن کاملSensitivity Analysis and Stray Capacitance of Helical Flux Compression Generator with Multi Layer Filamentary Conductor in Rectangular Cross-Section
This paper presents an approach to calculate the equivalent stray capacitance (SC) of n-turn of the helical flux compression generator (HFCG) coil with multi layer conductor wire filaments (MLCWF) in the form of rectangular cross-section. This approach is based on vespiary regular hexagonal (VRH) model. In this method, wire filaments of the generator coil are separated into many very small simi...
متن کاملImproving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning
In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...
متن کاملOnline learning of positive and negative prototypes with explanations based on kernel expansion
The issue of classification is still a topic of discussion in many current articles. Most of the models presented in the articles suffer from a lack of explanation for a reason comprehensible to humans. One way to create explainability is to separate the weights of the network into positive and negative parts based on the prototype. The positive part represents the weights of the correct class ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.01776 شماره
صفحات -
تاریخ انتشار 2017