Performance Evaluation of Neural Network Based Pulse-Echo Weld Defect Classifiers

نویسنده

  • S. Seyedtabaii
چکیده

Pulse-echo ultrasonic signal is used to detect weld defects with high probability. However, utilizing echo signal for defects classification is another issue that has attracted attention of many researchers who have devised algorithms and tested them against their own databases. In this paper, a study is conducted to score the performance of various algorithms against a single echo signal database. Algorithms tested the use of Wavelet Transform (WT), Fast Fourier Transform (FFT) and time domain echo signal features and employed several NN’s architectures such as Multi-Layer Perceptron Neural Network (MLP), Self Organizing Map (SOM) and others known to be good classifiers. The average performance of all can be viewed fair (90%) while some algorithms render success rate of about 94%. It seems that acquiring higher success rates out of a single fixed angle probe pulseecho set up needs new arrangements of data collection, which is under investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Use of Artificial Neural Network in the Classification of Pulse-Echo and TOFD Ultra-Sonic Signals

The present work evaluates the application of artificial neural networks for pattern recognition of ultrasonic signals using pulse-echo and TOFD (Time of Flight Diffraction) techniques in weld beads. In this study pattern classifiers are implemented by artificial neural network of backpropagation type using MATLAB. The ultrasonic signals acquired from pulse-echo and TOFD were introduced, separ...

متن کامل

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...

متن کامل

Feature Extraction and Optimisation for X-ray Weld Image Classification

Computer aided image analysis systems for radiographic inspection (X-ray or gamma ray) are among the most commonly used Non-destructive Evaluation (NDE) methods. The accuracy of these systems is very much depending on the selected features which are extracted from weld defect images. In this paper, we firstly introduce a computer aided image analysis system for X-ray image inspection and evalua...

متن کامل

Multiclass defect detection and classification in weld radiographic images using geometric and texture features

In this paper, a method for the detection and classification of defects in weld radiographs is presented. The method has been applied for detecting and discriminating discontinuities in the weld images that may correspond to false alarms or defects such as worm holes, porosity, linear slag inclusion, gas pores, lack of fusion or crack. A set of 43 descriptors corresponding to texture measuremen...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012