V(D)J recombination frequencies can be profoundly affected by changes in the spacer sequence.
نویسندگان
چکیده
Each V, D, and J gene segment is flanked by a recombination signal sequence (RSS), composed of a conserved heptamer and nonamer separated by a 12- or 23-bp spacer. Variations from consensus in the heptamer or nonamer at specific positions can dramatically affect recombination frequency, but until recently, it had been generally held that only the length of the spacer, but not its sequence, affects the efficacy of V(D)J recombination. In this study, we show several examples in which the spacer sequence can significantly affect recombination frequencies. We show that the difference in spacer sequence alone of two V(H)S107 genes affects recombination frequency in recombination substrates to a similar extent as the bias observed in vivo. We show that individual positions in the spacer can affect recombination frequency, and those positions can often be predicted by their frequency in a database of RSS. Importantly, we further show that a spacer sequence that has an infrequently observed nucleotide at each position is essentially unable to support recombination in an extrachromosmal substrate assay, despite being flanked by a consensus heptamer and nonamer. This infrequent spacer sequence RSS shows only a 2-fold reduction of binding of RAG proteins, but the in vitro cleavage of this RSS is approximately 9-fold reduced compared with a good RSS. These data demonstrate that the spacer sequence should be considered to play an important role in the recombination efficacy of an RSS, and that the effect of the spacer occurs primarily subsequent to RAG binding.
منابع مشابه
A Functional Analysis of the Spacer of V(D)J Recombination Signal Sequences
During lymphocyte development, V(D)J recombination assembles antigen receptor genes from component V, D, and J gene segments. These gene segments are flanked by a recombination signal sequence (RSS), which serves as the binding site for the recombination machinery. The murine Jbeta2.6 gene segment is a recombinationally inactive pseudogene, but examination of its RSS reveals no obvious reason f...
متن کاملUnequal VH gene rearrangement frequency within the large VH7183 gene family is not due to recombination signal sequence variation, and mapping of the genes shows a bias of rearrangement based on chromosomal location.
Much of the nonrandom usage of V, D, and J genes in the Ab repertoire is due to different frequencies with which gene segments undergo V(D)J rearrangement. The recombination signal sequences flanking each segment are seldom identical with consensus sequences, and this natural variation in recombination signal sequence (RSS) accounts for some differences in rearrangement frequencies in vivo. Her...
متن کاملThe RAG1 and RAG2 Proteins Establish the 12/23 Rule in V(D)J Recombination
V(D)J recombination requires a pair of signal sequences with spacer lengths of 12 and 23 base pairs. Cleavage by the RAG1 AND RAG2 proteins was previously shown to demand only a single signal sequence. Here, we established conditions where 12- and 23-spacer signal sequences are both necessary for cleavage. Coupled cutting at both sites requires only the RAG1 and RAG2 proteins, but depends on th...
متن کاملRAG1 Mediates Signal Sequence Recognition and Recruitment of RAG2 in V(D)J Recombination
Recent studies have demonstrated that DNA cleavage during V(D)J recombination is mediated by the RAG1 and RAG2 proteins. These proteins must therefore bind to the recombination signals, but the specific binding interaction has been difficult to study in vitro. Here, we use an in vivo one-hybrid DNA binding assay to demonstrate that RAG1, in the absence of RAG2, can mediate signal recognition vi...
متن کاملSequence of the Spacer in the Recombination Signal Sequence Affects V(D)J Rearrangement Frequency and Correlates with Nonrandom Vκ Usage In Vivo
Functional variable (V), diversity (D), and joining (J) gene segments contribute unequally to the primary repertoire. One factor contributing to this nonrandom usage is the relative frequency with which the different gene segments rearrange. Variation from the consensus sequence in the heptamer and nonamer of the recombination signal sequence (RSS) is therefore considered a major factor affecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 171 10 شماره
صفحات -
تاریخ انتشار 2003