Brk is coamplified with ErbB2 to promote proliferation in breast cancer.
نویسندگان
چکیده
Amplification of the receptor tyrosine kinase ErbB2 is frequently observed in breast cancer. Amplification of erbB2 is also associated with multiple genomic gains and losses; however, the importance of these associated changes is largely unknown. We demonstrate that Brk, a cytoplasmic tyrosine kinase, is coamplified and coexpressed with ErbB2 in human breast cancers. ErbB2 interacts with Brk and increases its intrinsic kinase activity. Expression of Brk enhances the ErbB2-induced activation of Ras/MAPK signaling and cyclin E/cdk2 activity to induce cell proliferation of mammary 3-dimensional acini in culture. In a murine model of breast cancer, expression of Brk was found to shorten the latency of ErbB2-induced tumors by promoting cell proliferation, with no effect on protection from apoptosis. Furthermore, overexpression of Brk conferred resistance to the ability of Lapatinib, an ErbB2 kinase inhibitor, to inhibit ErbB2-induced proliferation. Thus, we identified Brk as a drug target for ErbB2-positive cancers.
منابع مشابه
Correction: Breast Tumor Kinase Phosphorylates p190RhoGAP to Regulate Rho and Ras and Promote Breast Carcinoma Growth, Migration, and Invasion.
Breast tumor kinase (Brk), an Src-like nonreceptor tyrosine kinase, is overexpressed in breast cancer and several other cancer types. Our previous study indicates that Brk promotes cell migration and tumor invasion by phosphorylating the focal adhesion protein paxillin. Here, we report the identification of p190RhoGAP-A (p190) as a Brk substrate. Brk phosphorylates p190 at the Y(1105) residue b...
متن کاملEffect of Extremely Low–frequency Electromagnetic Field on Apoptosis Iinduction and Expression of Estrogen Receptor, Progesterone Receptor, and ERBB2 in BT-474 Cells
Introduction: Breast cancer is the most common cancer and the first cause of cancer-related death in women worldwide. Although admirable achievements have been made in finding new therapeutic interventions, introducing efficient approaches with the least side effect is still undoubtedly demanded. Exposure to extremely-low frequency electromagnetic field (ELF-EMF) with specific parameters of fre...
متن کاملCorrection: BRK Targets Dok1 for Ubiquitin-Mediated Proteasomal Degradation to Promote Cell Proliferation and Migration
Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification...
متن کاملTitle: Involvement of Stap-2 in Brk-mediated Phosphorylation and Activation of Stat5 in Breast Cancer Cells
Signal-transducing adaptor protein (STAP)-2 is a recently identified adaptor protein that contains Pleckstrin homology (PH) and Src homology 2 (SH2)-like domains, and is also known to be a substrate of breast tumor kinase (Brk). In a previous study, we found that STAP-2 upregulated Brk-mediated activation of signal transducer and activator of transcription (STAT) 3 in breast cancer cells. Here,...
متن کاملBreast tumor kinase (protein tyrosine kinase 6) regulates heregulin-induced activation of ERK5 and p38 MAP kinases in breast cancer cells.
Total tyrosine kinase activity is often elevated in both cytosolic and membrane fractions of malignant breast tissue and correlates with a decrease in disease-free survival. Breast tumor kinase (Brk; protein tyrosine kinase 6) is a soluble tyrosine kinase that was cloned from a metastatic breast tumor and found to be overexpressed in a majority of breast tumors. Herein, we show that Brk is over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 34 شماره
صفحات -
تاریخ انتشار 2008