A strategy for recovering roots of bivariate polynomials modulo a prime

نویسندگان

  • Paula Bustillo
  • Domingo Gómez-Pérez
  • Jaime Gutierrez
  • Álvar Ibeas
چکیده

We show how, when given an irreducible bivariate polynomial with coefficients in a finite prime field and an approximation to one of its roots, one can recover that root efficiently, if the approximation is good enough. This result has been motivated by the predictability problem for non-linear pseudorandom number generators and other potential applications to cryptography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recovering zeros of polynomials modulo a prime

Let p be a prime and Fp the finite field with p elements. We show how, when given an irreducible bivariate polynomial F ∈ Fp[X,Y ] and an approximation to a zero, one can recover the root efficiently, if the approximation is good enough. The strategy can be generalized to polynomials in the variables X1, . . . , Xm over the field Fp. These results have been motivated by the predictability probl...

متن کامل

A Tool Kit for Finding Small Roots of Bivariate Polynomials over the Integers

We present a new and flexible formulation of Coppersmith’s method for finding small solutions of bivariate polynomials p(x, y) over the integers. Our approach allows to maximize the bound on the solutions of p(x, y) in a purely combinatorial way. We give various construction rules for different shapes of p(x, y)’s Newton polygon. Our method has several applications. Most interestingly, we reduc...

متن کامل

On Hensel’s Roots and a Factorization Formula in Z[[x]]

Given an odd prime p, we provide formulas for the Hensel lifts of polynomial roots modulo p, and give an explicit factorization over the ring of formal power series with integer coe cients for certain reducible polynomials whose constant term is of the form pw with w > 1. All of our formulas are given in terms of partial Bell polynomials and rely on the inversion formula of Lagrange.

متن کامل

Modular Las Vegas algorithms for polynomial absolute factorization

Let f(X,Y ) ∈ Z[X, Y ] be an irreducible polynomial over Q. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of f , or more precisely, of f modulo some prime integer p. The same idea of choosing a p satisfying some prescribed properties together with LLL is used to provide a new strategy for absolute factorization of f(X, Y ). We present our approach i...

متن کامل

Research Article Distribution of Roots of Polynomial Congruences

For a prime p, we obtain an upper bound on the discrepancy of fractions r/ p, where r runs through all of roots modulo p of all monic univariate polynomials of degree d whose vector of coefficients belongs to a d-dimensional box Ꮾ. The bound is nontrivial starting with boxes Ꮾ of size |Ꮾ| ≥ p d/2+ε for any fixed ε < 0 and sufficiently large p.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009