Multi-objective evolutionary algorithms for financial portfolio design
نویسندگان
چکیده
Efficient portfolio design is a principal challenge in modern computational finance. Optimization based on Markowitz two-objective mean-variance approach is computationally expensive for real financial world. Practical portfolio design introduces further complexity as it requires the optimization of multiple return and risk measures. Some of these measures are nonlinear and nonconvex. The problem of portfolio design is a standard problem in financial world and has received a lot of attention. Three well known multi-objective evolutionary algorithms i.e. Pareto envelope-based selection algorithm , Micro Genetic algorithm and Multiobjective particle swarm optimization has been applied for solving the bi-objective portfolio optimization problem which simultaneously maximize the return measures and minimize the risk measures. Performance comparison carried out by performing different numerical experiments. The approach has been tested on real-life portfolio with many assets. The results show that MOPSO outperforms the existing method for the considered test cases.
منابع مشابه
Optimization of Bank Portfolio Investment Decision Considering Resistive Economy
Increasing economy’s resistance against the menace of sanctions, various risks, shocks, and internal and external threats are one of the main national policies which can be implemented through bank investments. Investment project selection is a complex and multi-criteria decision-making process that is influenced by multiple and often some conflicting objectives. This paper studies portfolio inve...
متن کاملA learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization
Portfolio optimization involves the optimal assignment of limited capital to different available financial assets to achieve a reasonable trade-off between profit and risk objectives. In this paper, we studied the extended Markowitz’s meanvariance portfolio optimization model. We considered the cardinality, quantity, pre-assignment and round lot constraints in the extended model. These four rea...
متن کاملMulti-objective evolutionary algorithms for a preventive healthcare facility network design
Preventive healthcare aims at reducing the likelihood and severity of potentially life-threatening illnesses by protection and early detection. In this paper, a bi-objective mathematical model is proposed to design a network of preventive healthcare facilities so as to minimize total travel and waiting time as well as establishment and staffing cost. Moreover, each facility acts as M/M/1 queuin...
متن کاملMultiobjective Algorithms with Resampling for Portfolio Optimization
Constrained financial portfolio optimization is a challenging domain where the use of multiobjective evolutionary algorithms has been thriving over the last few years. One of the major issues related to this problem is the dependence of the results on a set of parameters. Given the nature of financial prediction, these figures are often inaccurate, which results in unreliable estimates for the ...
متن کاملA Comparative Study of Multi-objective Evolutionary Algorithms to Optimize the Selection of Investment Portfolios with Cardinality Constraints
We consider the problem of selecting investment components according to two partially opposed measures: the portfolio performance and its risk. We approach this within Markowitz’s model, considering the case of mutual funds market in Europe until July 2010. Comparisons were made on three multi-objective evolutionary algorithms, namely NSGAII, SPEA2 and IBEA. Two well-known performance measures ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCVR
دوره 1 شماره
صفحات -
تاریخ انتشار 2010