Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle.
نویسندگان
چکیده
GroEL is an Escherichia coli chaperonin that is composed of two heptameric rings stacked back-to-back. GroEL assists protein folding with its cochaperonin GroES in an ATP-dependent manner in vitro and in vivo. However, it is still unclear whether GroES binds to both rings of GroEL simultaneously under physiological conditions. In this study, we monitored the GroEL-GroES interaction in the reaction cycle using fluorescence resonance energy transfer. We found that nearly equivalent amounts of symmetric GroEL-(GroES)(2) (football-shaped) complex and asymmetric GroEL-GroES (bullet-shaped) complex coexist during the functional reaction cycle. We also found that D398A, an ATP hydrolysis defective mutant of GroEL, forms a football-shaped complex with ATP bound to the two rings. Furthermore, we showed that ADP prevents the association of ATP to the trans-ring of GroEL, and as a consequence, the second GroES cannot bind to GroEL. Considering the concentrations of ADP and ATP in E. coli, ADP is expected to have a small effect on the inhibition of GroES binding to the trans-ring of GroEL in vivo. These results suggest that we should reconsider the chaperonin-mediated protein-folding mechanism that involves the football-shaped complex.
منابع مشابه
Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides.
It has been widely believed that an asymmetric GroEL-GroES complex (termed the bullet-shaped complex) is formed solely throughout the chaperonin reaction cycle, whereas we have recently revealed that a symmetric GroEL-(GroES)(2) complex (the football-shaped complex) can form in the presence of denatured proteins. However, the dynamics of the GroEL-GroES interaction, including the football-shape...
متن کاملReview: a structural view of the GroE chaperone cycle.
The GroE chaperone system consists of two ring-shaped oligomeric components whose association creates different functional states. The most remarkable property of the GroE system is the ability to fold proteins under conditions where spontaneous folding cannot occur. To achieve this, a fully functional system consisting of GroEL, the cochaperone GroES, and ATP is necessary. Driven by ATP bindin...
متن کاملPhysicochemical Properties of the Mammalian Molecular Chaperone HSP60
The E. coli GroEL/GroES chaperonin complex acts as a folding cage by producing a bullet-like asymmetric complex, and GroEL exists as double rings regardless of the presence of adenosine triphosphate (ATP). Its mammalian chaperonin homolog, heat shock protein, HSP60, and co-chaperonin, HSP10, play an essential role in protein folding by capturing unfolded proteins in the HSP60/HSP10 complex. How...
متن کاملChaperonin GroEL accelerates protofibril formation and decorates fibrils of the Het-s prion protein.
We have studied the interaction of the prototypical chaperonin GroEL with the prion domain of the Het-s protein using solution and solid-state NMR, electron and atomic force microscopies, and EPR. While GroEL accelerates Het-s protofibril formation by several orders of magnitude, the rate of appearance of fibrils is reduced. GroEL remains bound to Het-s throughout the aggregation process and de...
متن کاملFormation and structures of GroEL:GroES2 chaperonin footballs, the protein-folding functional form.
The GroE chaperonins assist substrate protein (SP) folding by cycling through several conformational states. With each cycle the SP is, in turn, captured, unfolded, briefly encapsulated (t1/2 ∼ 1 s), and released by the chaperonin complex. The protein-folding functional form is the US-football-shaped GroEL:GroES2 complex. We report structures of two such "football" complexes to ∼ 3.7-Å resoluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 283 35 شماره
صفحات -
تاریخ انتشار 2008