Well-posedness for the Heat Flow of Biharmonic Maps with Rough Initial Data

نویسنده

  • Changyou Wang
چکیده

This paper establishes the local (or global, resp.) well-posedness of the heat flow of bihharmonic maps from R to a compact Riemannian manifold without boundary for initial data with small local BMO (or BMO, resp.) norms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness for the heat flow of polyharmonic maps with rough initial data

We establish both local and global well-posedness of the heat flow of polyharmonic maps from R to a compact Riemannian manifold without boundary for initial data with small BMO norms.

متن کامل

Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data

We investigate the well-posedness of (i) the heat flow of harmonic maps from R to a compact Riemannian manifold N without boundary for initial data in BMO; and (ii) the hydrodynamic flow (u, d) of nematic liquid crystals on R for initial data in BMO−1 × BMO.

متن کامل

Regularity and uniqueness of the heat flow of biharmonic maps

In this paper, we first establish regularity of the heat flow of biharmonic maps into the unit sphere S ⊂ R under a smallness condition of renormalized total energy. For the class of such solutions to the heat flow of biharmonic maps, we prove the properties of uniqueness, convexity of hessian energy, and unique limit at t = ∞. We establish both regularity and uniqueness for Serrin’s (p, q)-sol...

متن کامل

Common fixed points of four maps using generalized weak contractivity and well-posedness

In this paper, we introduce the concept of generalized -contractivityof a pair of maps w.r.t. another pair. We establish a common fixed point result fortwo pairs of self-mappings, when one of these pairs is generalized -contractionw.r.t. the other and study the well-posedness of their fixed point problem. Inparticular, our fixed point result extends the main result of a recent paper ofQingnian ...

متن کامل

Local and Global Well-posedness of Wave Maps on R for Rough Data

We consider wave maps between Minkowski space R and an analytic manifold. Results include global existence for large data in Sobolev spaces Hs for s > 3/4, and in the scale-invariant norm L1,1. We prove local well-posedness in Hs for s > 3/4, and a negative well-posedness result for wave maps on R with data in Hn/2(R), n ≥ 1. Also included are positive and negative results for scattering.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010