Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons.
نویسندگان
چکیده
The Eph family of tyrosine kinase receptors has recently been implicated in various processes involving the detection of environmental cues such as axonal guidance, targeted cell migration and boundary formation. We have inactivated the mouse EphA4 gene to investigate its functions during development. Homozygous EphA4 mutant animals show peroneal muscular atrophy correlating with the absence of the peroneal nerve, the main dorsal nerve of the hindlimb. This phenotype is also observed, although with a lower penetrance, in heterozygotes. During normal hindlimb innervation, motor axons converge towards the sciatic plexus region at the base of the limb bud, where they must choose between dorsal and ventral trajectories within the limb. Among the axons emerging from the sciatic plexus, dorsal projections show higher levels of EphA4 protein than ventral axons. In EphA4 mutant mice, presumptive dorsal motor axons fail to enter the dorsal compartment of the limb and join the ventral nerve. Our data therefore suggest that the level of EphA4 protein in growing limb motor axons is involved in the selection of dorsal versus ventral trajectories, thus contributing to the topographic organisation of motor projections.
منابع مشابه
Expression of EphA4, ephrin-A2 and ephrin-A5 during axon outgrowth to the hindlimb indicates potential roles in pathfinding.
During neural development, spinal motor axons extend in a precise manner from the ventral portion of the developing spinal cord to innervate muscle targets in the limb. Although classical studies in avians have characterized the cellular interactions that influence motor axon pathfinding to the limb, less is known about the molecular mechanisms that mediate this developmental event. Here, we ex...
متن کاملEphA4 constitutes a population-specific guidance cue for motor neurons.
Motor neurons in the ventral neural tube project axons specifically to their target muscles in the periphery. Although many of the transcription factors that specify motor neuron cell fates have been characterized, less is understood about the mechanisms that guide motor axons to their correct targets. We show that ectopic expression of EphA4 receptor tyrosine kinase alters the trajectories of ...
متن کاملCooperation between GDNF/Ret and ephrinA/EphA4 Signals for Motor-Axon Pathway Selection in the Limb
Establishment of limb innervation by motor neurons involves a series of hierarchical axon guidance decisions by which motor-neuron subtypes evaluate peripheral guidance cues and choose their axonal trajectory. Earlier work indicated that the pathway into the dorsal limb by lateral motor column (LMC[l]) axons requires the EphA4 receptor, which mediates repulsion elicited by ephrinAs expressed in...
متن کاملDevelopmental regulation of EphA4 expression in the chick auditory brainstem.
The avian auditory brainstem nuclei nucleus magnocellularis (NM) and nucleus laminaris (NL) display highly precise patterns of neuronal connectivity. NM projects tonotopically to the dorsal dendrites of ipsilateral NL neurons and to the ventral dendrites of contralateral NL neurons. The precision of this binaural segregation is evident at the earliest developmental stage at which connections ca...
متن کاملCoordinate Roles for LIM Homeobox Genes in Directing the Dorsoventral Trajectory of Motor Axons in the Vertebrate Limb
Motor neurons extend axons along specific trajectories, but the molecules that control their pathfinding remain poorly defined. We show that two LIM homeodomain transcription factors, Lim1 and Lmx1b, control the initial trajectory of motor axons in the developing mammalian limb. The expression of Lim1 by a lateral set of lateral motor column (LMC) neurons ensures that their axons select a dorsa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 127 15 شماره
صفحات -
تاریخ انتشار 2000