Universal Cellular Automata Based on the Collisions of Soft Spheres∗

نویسنده

  • Norman Margolus
چکیده

Fredkin’s Billiard Ball Model (BBM) is a continuous classical mechanical model of computation based on the elastic collisions of identical finite-diameter hard spheres. When the BBM is initialized appropriately, the sequence of states that appear at successive integer time-steps is equivalent to a discrete digital dynamics. Here we discuss some models of computation that are based on the elastic collisions of identical finitediameter soft spheres: spheres which are very compressible and hence take an appreciable amount of time to bounce off each other. Because of this extended impact period, these Soft Sphere Models (SSM’s) correspond directly to simple lattice gas automata—unlike the fast-impact BBM. Successive time-steps of an SSM lattice gas dynamics can be viewed as integer-time snapshots of a continuous physical dynamics with a finite-range soft-potential interaction. We present both 2D and 3D models of universal CA’s of this type, and then discuss spatially-efficient computation using momentum conserving versions of these models (i.e., without fixed mirrors). Finally, we discuss the interpretation of these models as relativistic and as semi-classical systems, and extensions of these models motivated by these interpretations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal CA’s Based on the Collisions of Soft Spheres

Fredkin’s Billiard Ball Model (BBM) is a continuous classical mechanical model of computation based on the elastic collisions of identical finite-diameter hard spheres. When the BBM is initialized appropriately, the sequence of states that appear at successive integer time-steps is equivalent to a discrete digital dynamics. Here we discuss some models of computation that are based on the elasti...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Novel Phase-frequency Detector based on Quantum-dot Cellular Automata Nanotechnology

The electronic industry has grown vastly in recent years, and researchers are trying to minimize circuits delay, occupied area and power consumption as much as possible. In this regard, many technologies have been introduced. Quantum Cellular Automata (QCA) is one of the schemes to design nano-scale digital electronic circuits. This technology has high speed and low power consumption, and occup...

متن کامل

Modeling Urban Sprawling of Tehran Metropolitan Area Based on PSO

The main goal of the present study was to implement a hybrid pattern of cellular automata model and particle swarm optimization algorithm based on TM and ETM+ imagery of landsat satellite from 1988 to 2010 for simulating the urban sprawling. In this study, an alternative model was implemented in two ways: the first method was based on two images (1988 and 2010) and the second one was based on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008