Balanced binary trees in the Tamari lattice

نویسنده

  • Samuele Giraudo
چکیده

We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that the intervals [T0, T1] where T0 and T1 are balanced trees are isomorphic as posets to a hypercube. We introduce tree patterns and synchronous grammars to get a functional equation of the generating series enumerating balanced tree intervals. Résumé. Nous montrons que l’ensemble des arbres équilibrés est clos par intervalle dans le treillis de Tamari. Nous caractérisons la forme des intervalles du type [T0, T1] où T0 et T1 sont équilibrés en montrant qu’en tant qu’ensembles partiellement ordonnés, ils sont isomorphes à un hypercube. Nous introduisons la notion de motif d’arbre et de grammaire synchrone dans le but d’établir une équation fonctionnelle de la série génératrice qui dénombre les intervalles d’arbres équilibrés.

منابع مشابه

Intervals of balanced binary trees in the Tamari lattice

We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that the intervals [T, T ′] where T and T ′ are balanced binary trees are isomorphic as posets to a hypercube. We introduce synchronous grammars that allow to generate tree-like structures and obtain fixed-point functional equations to enumerate these. We also introduce imbalance tree pattern...

متن کامل

From quantum electrodynamics to posets of planar binary trees

This paper is a brief mathematical excursion which starts from quantum electrodynamics and leads to the Möbius function of the Tamari lattice of planar binary trees, within the framework of groups of tree-expanded series. First we recall Brouder’s expansion of the photon and the electron Green’s functions on planar binary trees, before and after the renormalization. Then we recall the structure...

متن کامل

A Motzkin filter in the Tamari lattice

The Tamari lattice of order n can be defined on the set Tn of binary trees endowed with the partial order relation induced by the well-known rotation transformation. In this paper, we restrict our attention to the subset Mn of Motzkin trees. This set appears as a filter of the Tamari lattice. We prove that its diameter is 2n − 5 and that its radius is n − 2. Enumeration results are given for jo...

متن کامل

An extension of Tamari lattices

For any finite path v on the square lattice consisting of north and east unit steps, we construct a poset Tam(v) that consists of all the paths lying weakly above v with the same endpoints as v. For particular choices of v, we recover the traditional Tamari lattice and the m-Tamari lattice. In particular this solves the problem of extending the m-Tamari lattice to any pair (a, b) of relatively ...

متن کامل

A sequent calculus for the Tamari order

We introduce a sequent calculus with a simple restriction of Lambek’s product rules that precisely captures the classical Tamari order, i.e., the partial order on fully-bracketed words (equivalently, binary trees) induced by a semi-associative law (equivalently, tree rotation). We establish a focusing property for this sequent calculus (a strengthening of cut-elimination), which yields the foll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010