Making Semantic Interpretation Parser-Independent
نویسنده
چکیده
S p r i n g e r V e r l a g Abstract. We present an approach to semantic interpretation of syntactically parsed Japanese sentences that works largely parser-independent. The approach relies on a standardized parse tree format that restricts the number of syntactic con gurations that the semantic interpretation rules have to anticipate. All parse trees are converted to this format prior to semantic interpretation. This setup allows us not only to apply the same set of semantic interpretation rules to output from di erent parsers, but also to independently develop parsers and semantic interpretation rules.
منابع مشابه
Feature Engineering in Persian Dependency Parser
Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...
متن کاملWide-Coverage Semantic Representations from a CCG Parser
This paper shows how to construct semantic representations from the derivations produced by a wide-coverage CCG parser. Unlike the dependency structures returned by the parser itself, these can be used directly for semantic interpretation. We demonstrate that well-formed semantic representations can be produced for over 97% of the sentences in unseen WSJ text. We believe this is a major step to...
متن کاملLearning a Compositional Semantic Parser using an Existing Syntactic Parser
We present a new approach to learning a semantic parser (a system that maps natural language sentences into logical form). Unlike previous methods, it exploits an existing syntactic parser to produce disambiguated parse trees that drive the compositional semantic interpretation. The resulting system produces improved results on standard corpora on natural language interfaces for database queryi...
متن کاملA Chunking Parser for Semantic Interpretation of Spoken Route Directions in Human-Robot Dialogue
We present a novel application of the chunking parser for data-driven semantic interpretation of spoken route directions into route graphs that are useful for robot navigation. Various sets of features and machine learning algorithms were explored. The results indicate that our approach is robust to speech recognition errors, and could be easily used in other languages using simple features.
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کامل