Unified View of Matrix Completion under General Structural Constraints

نویسندگان

  • Suriya Gunasekar
  • Arindam Banerjee
  • Joydeep Ghosh
چکیده

In this paper, we present a unified analysis of matrix completion under general low-dimensional structural constraints induced by any norm regularization. We consider two estimators for the general problem of structured matrix completion, and provide unified upper bounds on the sample complexity and the estimation error. Our analysis relies on results from generic chaining, and we establish two intermediate results of independent interest: (a) in characterizing the size or complexity of low dimensional subsets in high dimensional ambient space, a certain partial complexity measure encountered in the analysis of matrix completion problems is characterized in terms of a well understood complexity measure of Gaussian widths, and (b) it is shown that a form of restricted strong convexity holds for matrix completion problems under general norm regularization. Further, we provide several non-trivial examples of structures included in our framework, notably the recently proposed spectral k-support norm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Family Matrix Completion under Structural Constraints

We consider the matrix completion problem of recovering a structured matrix from noisy and partial measurements. Recent works have proposed tractable estimators with strong statistical guarantees for the case where the underlying matrix is low–rank, and the measurements consist of a subset, either of the exact individual entries, or of the entries perturbed by additive Gaussian noise, which is ...

متن کامل

Missing Entries Matrix Approximation and Completion

We describe several algorithms for matrix completion and matrix approximation when only some of its entries are known. The approximation constraint can be any whose approximated solution is known for the full matrix. For low rank approximations, similar algorithms appears recently in the literature under different names. In this work, we introduce new theorems for matrix approximation and show ...

متن کامل

An EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data

The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...

متن کامل

Multi-View Matrix Completion for Clustering with Side Information

In many clustering applications, real world data are often collected from multiple sources or with features from multiple channels. Thus, multi-view clustering has attracted much attention during the past few years. It is noteworthy that in many situations, in addition to the data samples, there is some side information describing the relation between instances, such as must-links and cannot-li...

متن کامل

A Unified Computational and Statistical Framework for Nonconvex Low-rank Matrix Estimation

We propose a unified framework for estimating low-rank matrices through nonconvex optimization based on gradient descent algorithm. Our framework is quite general and can be applied to both noisy and noiseless observations. In the general case with noisy observations, we show that our algorithm is guaranteed to linearly converge to the unknown low-rank matrix up to a minimax optimal statistical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015