Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text
نویسندگان
چکیده
The application of clustering methods for automatic taxonomy construction from text requires knowledge about the tradeoff between, (i), their effectiveness (quality of result), (ii), efficiency (run-time behaviour), and, (iii), traceability of the taxonomy construction by the ontology engineer. In this line, we present an original conceptual clustering method based on Formal Concept Analysis for automatic taxonomy construction and compare it with hierarchical agglomerative clustering and hierarchical divisive clustering.
منابع مشابه
Comparing Conceptual, Divisive and Agglomerative Clustering for Learning Taxonomies from Text
The application of clustering methods for automatic taxonomy construction from text requires knowledge about the tradeoff between, (i), their effectiveness (quality of result), (ii), efficiency (run-time behaviour), and, (iii), traceability of the taxonomy construction by the ontology engineer. In this line, we present an original conceptual clustering method based on Formal Concept Analysis fo...
متن کاملLearning Concept Hierarchies from Text Corpora using Formal Concept Analysis
We present a novel approach to the automatic acquisition of taxonomies or concept hierarchies from a text corpus. The approach is based on Formal Concept Analysis (FCA), a method mainly used for the analysis of data, i.e. for investigating and processing explicitly given information. We follow Harris’ distributional hypothesis and model the context of a certain term as a vector representing syn...
متن کاملCriteria for Polynomial Time (
Research in cluster analysis has resulted in a large number of algorithms and similarity measurements for clustering scienti c data. Machine learning researchers have published a number of methods for conceptual clustering, in which observations are grouped into clusters which have \good" descriptions in some language. We investigate the general properties which similarity metrics, objective fu...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملClustering Concept Hierarchies from Text
Abstract We present a novel approach to learning taxonomies or concept hierarchies from text. The approach is based on Formal Concept Analysis, a method mainly used for the analysis of data, i.e. for investigating and processing explicitly given information. Our approach is based on the distributional hypothesis, i.e. that nouns or terms are similar to the extent to which they share contexts. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004