Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling.
نویسندگان
چکیده
The Brn-3 subfamily of POU domain genes are expressed in sensory neurons and in select brainstem nuclei. Earlier work has shown that targeted deletion of the Brn-3b and Brn-3c genes produce, respectively, defects in the retina and in the inner ear. We show herein that targeted deletion of the Brn-3a gene results in defective suckling and in uncoordinated limb and trunk movements, leading to early postnatal death. Brn-3a (-/-) mice show a loss of neurons in the trigeminal ganglia, the medial habenula, the red nucleus, and the caudal region of the inferior olivary nucleus but not in the retina and dorsal root ganglia. In the trigeminal and dorsal root ganglia, but not in the retina, there is a marked decrease in the frequency of neurons expressing Brn-3b and Brn-3c, suggesting that Brn-3a positively regulates Brn-3b and Brn-3c expression in somatosensory neurons. Thus, Brn-3a exerts its major developmental effects in somatosensory neurons and in brainstem nuclei involved in motor control. The pheno-types of Brn-3a, Brn-3b, and Brn-3c mutant mice indicate that individual Brn-3 genes have evolved to control development in the auditory, visual, or somatosensory systems and that despite differences between these systems in transduction mechanisms, sensory organ structures, and central information processing, there may be fundamental homologies in the genetic regulatory events that control their development.
منابع مشابه
Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development.
The Brn-3 subfamily of POU-domain transcription factor genes consists of three highly homologous members-Brn-3a, Brn-3b, and Brn-3c-that are expressed in sensory neurons and in a small number of brainstem nuclei. This paper describes the role of Brn-3c in auditory and vestibular system development. In the inner ear, the Brn-3c protein is found only in auditory and vestibular hair cells, and the...
متن کاملThe Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons.
A search for POU domain sequences expressed in the human retina has led to the identification of three closely related genes: Brn-3a, Brn-3b, and Brn-3c. The structure and expression pattern of Brn-3b was reported earlier (Xiang et al., 1993); we report here the structures and expression patterns of Brn-3a and Brn-3c. Antibodies specific for each Brn-3 protein were generated and shown to label ...
متن کاملPOU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression.
Mice lacking the POU domain-containing transcription factor Brn-3a have several neuronal deficits. In the present paper, we show that Brn-3a plays two distinct roles during development of the trigeminal ganglion. In this ganglion, neurons expressing the neurotrophin receptors, TrkB and TrkC, are born between E9.5 and E11.5. In the absence of Brn-3a, very few neurons ever express TrkC, but TrkB-...
متن کاملPOU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells.
The three members of the Brn-3 family of POU domain transcription factors are found in highly restricted sets of central nervous system neurons. Within the retina, these factors are present only within subsets of ganglion cells. We show here that in the developing mouse retina, Brn-3b protein is first observed in presumptive ganglion cell precursors as they begin to migrate from the zone of div...
متن کاملEffect of Brn-3a deficiency on nociceptors and low-threshold mechanoreceptors in the trigeminal ganglion.
Immunohistochemistry for protein gene product 9.5 (PGP 9.5, a neuron specific protein) and vanilloid receptor 1-like receptor (VRL-1, a marker for medium-sized to large primary nociceptors) were used to assess the effects of Brn-3a deficiency on neuronal innervation of oral tissues and neurons of the trigeminal ganglion (TG). In the knockout mouse, the number of PGP 9.5-immunoreactive (-ir) ner...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 21 شماره
صفحات -
تاریخ انتشار 1996