Biomechanics of byssal threads outside the Mytilidae: Atrina rigida and Ctenoides mitis.

نویسندگان

  • Trevor Pearce
  • Michael Labarbera
چکیده

The byssus is the set of proteinaceous threads widely used by bivalves to attach themselves to the substrate. Previous researchers have focused on a single byssate family, the Mytilidae. However, the properties of byssal threads from species outside this family are of interest - first, because evolutionary patterns are only detectable if species from a range of taxa are examined, and second, because recent biomimetic research efforts would benefit from a wider range of ;mussel glue' exemplars. In the present study, we measured the mechanical properties of the byssal threads of two species outside the Mytilidae, the pen shell Atrina rigida Lightfoot and the flame ;scallop' Ctenoides mitis Lamarck. The mechanical properties of their byssal threads were significantly different from those of mytilids. For instance, the byssal threads of both species were significantly weaker than mytilid threads. Atrina rigida threads were significantly less extensible than mytilid threads, while C. mitis threads exhibited the highest extensibility ever recorded for the distal region of byssal threads. However, there were also interesting similarities in material properties across taxonomic groups. For instance, the threads of A. rigida and Modiolus modiolus Linnaeus both exhibited a prominent double-yield behavior, high stiffness combined with low extensibility, and similar correlations between stiffness and other thread properties. These similarities suggest that the thread properties of some semi-infaunal species may have evolved convergently. Further research on these patterns, along with biochemical analysis of threads which exhibit unusual properties like double-yield behavior, promises to contribute to both evolutionary biology and materials engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sugary interfaces mitigate contact damage where stiff meets soft

The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized ...

متن کامل

Seasonal variation in mussel byssal thread mechanics.

The blue mussel, Mytilus edulis, attaches itself to the substrate by producing a radially arranged complex of collagenous byssal threads. The strength of byssal attachment, or tenacity, has been shown to vary seasonally on Rhode Island shores, increasing twofold in spring in comparison with fall. It was previously assumed that this seasonality was due to increased thread production following pe...

متن کامل

Mapping chemical gradients within and along a fibrous structural tissue, mussel byssal threads.

The byssal thread of a mussel is an extraorganismic connective tissue that exhibits a striking end-to-end gradient in mechanical properties and thus provides a unique opportunity for studying how gradients are made. Mfp-1 (Mytilus foot protein-1) is a conspicuous component of the protective outer cuticle of byssal threads given its high 3,4-dihydroxyphenylalanine (Dopa) content at 10-15 mol %. ...

متن کامل

Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis.

The marine mussel Mytilus galloprovincialis is tethered to rocks in the intertidal zone by a holdfast known as the byssus. Functioning as a shock absorber, the byssus is composed of threads, the primary molecular components of which are collagen-containing proteins (preCOLs) that largely dictate the higher order self-assembly and mechanical properties of byssal threads. The threads contain addi...

متن کامل

Tensile and dynamic mechanical analysis of the distal portion of mussel (Mytilus edulis) byssal threads.

Dynamic mechanical analysis was used to record the behaviour of hydrated and dehydrated byssal threads under tensile stress and during dynamic thermal cycling. Fresh byssi, and byssi aged two weeks prior to testing, were used to further study the effects of age on the mechanical properties of this material. It was found that while older threads demonstrated increased stiffness, age did not nece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 212 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2009