No requirement for V(D)J recombination in p53-deficient thymic lymphoma.
نویسندگان
چکیده
The p53 tumor suppressor is activated in response to a variety of cellular stress signals, although specific in vivo signals that trigger tumor suppression are unknown. In mouse thymocytes, where p53 inactivation leads to tumorigenesis, several observations suggest that V(D)J recombination of T-cell receptor (TCR) loci could provide a DNA damage signal triggering p53-dependent apoptosis and tumor suppression. Inactivation of p53 would allow V(D)J driven mutation of additional cancer genes, facilitating tumorigenesis. Here, we show that mice with a p53 deficiency in thymocytes and unable to carry out V(D)J recombination are not impaired in the development of thymoma. Recombination-activating gene (RAG) deficiencies were introduced into both p53-/- mice and TgTDeltaN transgenic mice, a strain in which 100% of the mice develop thymoma due to thymocyte-specific inactivation of p53 by a simian virus 40 T-antigen variant. V(D)J recombination was dispensable for tumorigenesis since thymomas developed with or without the RAG-1 or RAG-2 gene, although some delay was observed. When V(D)J recombination was suppressed by expression of rearranged TCR transgenes, 100% of the TgTDeltaN mice developed thymoma, surprisingly with reduced latency. Further introduction of a RAG deficiency into these mice had no impact on the timing or frequency of tumorigenesis. Finally, karyotype and chromosome painting analyses showed no evidence for TCR gene translocations in p53-deficient thymomas, although abundant aneuploidy involving frequent duplication of certain chromosomes was present. Thus, contrary to the current hypothesis, these studies indicate that signals other than V(D)J recombination promote p53 tumor suppression in thymocytes and that the mechanism of tumorigenesis is distinct from TCR translocation oncogene activation.
منابع مشابه
Aberrant V(D)J recombination is not required for rapid development of H2ax/p53-deficient thymic lymphomas with clonal translocations.
Histone H2AX is required to maintain genomic stability in cells and to suppress malignant transformation of lymphocytes in mice. H2ax(-/-)p53(-/-) mice succumb predominantly to immature alphabeta T-cell lymphomas with translocations, deletions, and genomic amplifications that do not involve T-cell receptor (TCR). In addition, H2ax(-/-)p53(-/-) mice also develop at lower frequencies B and T lymp...
متن کاملRecombinase-activating gene (RAG) 2-mediated V(D)J recombination is not essential for tumorigenesis in Atm-deficient mice.
The majority of Atm-deficient mice die of malignant thymic lymphoma by 4-5 mo of age. Cytogenetic abnormalities in these tumors are consistently identified within the Tcr alpha/delta locus, suggesting that tumorigenesis is secondary to aberrant responses to double-stranded DNA breaks that occur during V(D)J recombination. Since V(D)J recombination is a recombinase-activating gene (RAG)-dependen...
متن کاملCritical role for Atm in suppressing V(D)J recombination-driven thymic lymphoma.
Chromosome translocations involving T cell receptor (TCR) loci have been found in tumors from Ataxia telangiectasia (AT) patients and in mouse Atm-/- thymoma, suggesting the involvement of V(D)J recombination in these malignancies. By introducing a RAG-1 deficiency into Atm-/- mice in the presence of a TCR transgene, we show that V(D)J recombination is critical for thymoma development in these ...
متن کاملHistone H2AX A Dosage-Dependent Suppressor of Oncogenic Translocations and Tumors
We employed gene targeting to study H2AX, a histone variant phosphorylated in chromatin surrounding DNA double-strand breaks. Mice deficient for both H2AX and p53 (H(delta/delta)P(-/-)) rapidly developed immature T and B lymphomas and solid tumors. Moreover, H2AX haploinsufficiency caused genomic instability in normal cells and, on a p53-deficient background, early onset of various tumors inclu...
متن کاملLymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination.
Mutations in XLF/Cernunnos (XLF) cause lymphocytopenia in humans, and various studies suggest an XLF role in classical nonhomologous end joining (C-NHEJ). We now find that XLF-deficient mouse embryonic fibroblasts are ionizing radiation (IR) sensitive and severely impaired for ability to support V(D)J recombination. Yet mature lymphocyte numbers in XLF-deficient mice are only modestly decreased...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 18 6 شماره
صفحات -
تاریخ انتشار 1998