The spectral decomposition of near-Toeplitz tridiagonal matrices

نویسندگان

  • Nuo Shen
  • Zhaolin Jiang
  • Juan Li
چکیده

Some properties of near-Toeplitz tridiagonal matrices with specific perturbations in the first and last main diagonal entries are considered. Applying the relation between the determinant and Chebyshev polynomial of the second kind, we first give the explicit expressions of determinant and characteristic polynomial, then eigenvalues are shown by finding the roots of the characteristic polynomial, which is due to the zeros of Chebyshev polynomial of the first kind, and the eigenvectors are obtained by solving symmetric tridiagonal linear systems in terms of Chebyshev polynomial of the third kind or the fourth kind. By constructing the inverse of the transformation matrices, we give the spectral decomposition of this kind of tridiagonal matrices. Furthermore, the inverse (if the matrix is invertible), powers and a square root are also determined. Keywords—Tridiagonal matrices, Spectral decomposition, Powers, Inverses, Chebyshev polynomials

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Spectral Decomposition of Some Tridiagonal Matrices

Some properties of near-Toeplitz tridiagonal matrices with specific perturbations in the first and last main diagonal entries are considered. Applying the relation between the determinant and Chebyshev polynomial of the second kind, we first give the explicit expressions of determinant and characteristic polynomial, then eigenvalues are shown by finding the roots of the characteristic polynomia...

متن کامل

Spectral properties of certain tridiagonal matrices

We study spectral properties of irreducible tridiagonal k−Toeplitz matrices and certain matrices which arise as perturbations of them.

متن کامل

The Characteristic Polynomial of Some Perturbed Tridiagonal k-Toeplitz Matrices

We generalize some recent results on the spectra of tridiagonal matrices, providing explicit expressions for the characteristic polynomial of some perturbed tridiagonal k-Toeplitz matrices. The calculation of the eigenvalues (and associated eigenvectors) follows straightforward. Mathematics Subject Classification: 15A18, 42C05, 33C45

متن کامل

The Structured Distance to Normality of an Irreducible Real Tridiagonal Matrix

The problem of computing the distance in the Frobenius norm of a given real irreducible tridiagonal matrix T to the algebraic variety of real normal irreducible tridiagonal matrices is solved. Simple formulas for computing the distance and a normal tridiagonal matrix at this distance are presented. The special case of tridiagonal Toeplitz matrices also is considered.

متن کامل

Positive Integer Powers of the Tridiagonal Toeplitz Matrices

In this paper we present an explicit expression for the arbitrary positive integer powers of the tridiagonal Toeplitz matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013