Penalized Estimation of Directed Acyclic Graphs From Discrete Data

نویسندگان

  • Jiaying Gu
  • Fei Fu
  • Qing Zhou
چکیده

The Bayesian network, with structure given by a directed acyclic graph (DAG), is a popular class of graphical models. However, learning Bayesian networks from discrete or categorical data is particularly challenging, due to the large parameter space and the difficulty in searching for a sparse structure. In this article, we develop a maximum penalized likelihood method to tackle this problem. Instead of the commonly used multinomial distribution, we model the conditional distribution of a node given its parents by multi-logit regression, in which an edge is parameterized by a set of coefficient vectors with dummy variables encoding the levels of a node. To obtain a sparse DAG, a group norm penalty is employed, and a blockwise coordinate descent algorithm is developed to maximize the penalized likelihood subject to the acyclicity constraint of a DAG. When interventional data are available, our method constructs a causal network, in which a directed edge represents a causal relation. We apply our method to various simulated and real data sets. The results show that our method is very competitive, compared to many existing methods, in DAG estimation from both interventional and high-dimensional observational data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs.

Directed acyclic graphs are commonly used to represent causal relationships among random variables in graphical models. Applications of these models arise in the study of physical and biological systems where directed edges between nodes represent the influence of components of the system on each other. Estimation of directed graphs from observational data is computationally NP-hard. In additio...

متن کامل

Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression

We consider the problem of estimating a directed acyclic graph (DAG) for a multivariate normal distribution from high-dimensional data with p ≫ n. Our main results establish nonasymptotic deviation bounds on the estimation error, sparsity bounds, and model selection consistency for a penalized least squares estimator under concave regularization. The proofs rely on interpreting the graphical mo...

متن کامل

O ct 2 01 7 LEARNING DIRECTED ACYCLIC GRAPHS WITH PENALIZED NEIGHBOURHOOD REGRESSION

We study a family of regularized score-based estimators for learning the structure of a directed acyclic graph (DAG) for a multivariate normal distribution from high-dimensional data with p ≫ n. Our main results establish support recovery guarantees and deviation bounds for a family of penalized least-squares estimators under concave regularization without assuming prior knowledge of a variable...

متن کامل

PenPC: A two-step approach to estimate the skeletons of high-dimensional directed acyclic graphs.

Estimation of the skeleton of a directed acyclic graph (DAG) is of great importance for understanding the underlying DAG and causal effects can be assessed from the skeleton when the DAG is not identifiable. We propose a novel method named PenPC to estimate the skeleton of a high-dimensional DAG by a two-step approach. We first estimate the nonzero entries of a concentration matrix using penali...

متن کامل

Faster way to agony

Many real-world phenomena exhibit strong hierarchical structure. Consequently, in many real-world directed social networks vertices do not play equal role. Instead, vertices form a hierarchy such that the edges appear mainly from upper levels to lower levels. Discovering hierarchies from such graphs is a challenging problem that has gained attention. Formally, given a directed graph, we want to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017