Robust pricing and hedging of double no-touch options

نویسندگان

  • Alexander M. G. Cox
  • Jan Oblój
چکیده

Double no-touch options, contracts which pay out a fixed amount provided an underlying asset remains within a given interval, are commonly traded, particularly in FX markets. In this work, we establish model-free bounds on the price of these options based on the prices of more liquidly traded options (call and digital call options). Key steps are the construction of superand sub-hedging strategies, to establish the bounds, and the use of Skorokhod embedding techniques to show the bounds are the best possible. In addition to establishing rigorous bounds, we consider carefully what is meant by arbitrage in settings where there is no a priori known probability measure. We discuss two natural extensions of the notion of arbitrage, weak arbitrage and weak free lunch with vanishing risk, which are needed to establish equivalence between the lack of arbitrage and the existence of a market model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Hedging of Double Touch Barrier Options

We consider model-free pricing of digital options, which pay out if the underlying asset has crossed both upper and lower barriers. We make only weak assumptions about the underlying process (typically continuity), but assume that the initial prices of call options with the same maturity and all strikes are known. Under such circumstances, we are able to give upper and lower bounds on the arbit...

متن کامل

A Note on the Fundamental Theorem of Asset Pricing under Model Uncertainty

We show that the recent results on the Fundamental Theorem of Asset Pricing and the super-hedging theorem in the context of model uncertainty can be extended to the case in which the options available for static hedging (hedging options) are quoted with bid-ask spreads. In this set-up, we need to work with the notion of robust no-arbitrage which turns out to be equivalent to no-arbitrage under ...

متن کامل

Pricing and Hedging of Quantile Options in a Flexible Jump Diffusion Model

This paper proposes a Laplace-transform-based approach to price the fixed-strike quantile options as well as to calculate the associated hedging parameters (delta and gamma) under a hyperexponential jump diffusion model, which can be viewed as a generalization of the well-known Black–Scholes model and Kou’s double exponential jump diffusion model. By establishing a relationship between floating...

متن کامل

Valuation of Continuously Monitored Double Barrier Options and Related Securities

In this paper, we apply Carr’s randomization approximation and the operator form of theWiener-Hopf method to double barrier options in continuous time. Each step in the resulting backward induction algorithm is solved using a simple iterative procedure that reduces the problem of pricing options with two barriers to pricing a sequence of certain perpetual contingent claims with first-touch sing...

متن کامل

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finance and Stochastics

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2011