Ferromagnetism of ZnO and GaN: A Review
نویسندگان
چکیده
The observation of ferromagnetism in magnetic ion doped II–VI diluted magnetic semiconductors (DMSs) and oxides, and later in (Ga,Mn)As materials has inspired a great deal of research interest in a field dubbed “spintronics” of late, which could pave the way to exploit spin in addition to charge in semiconductor devices. The main challenge for practical application of the DMS materials is the attainment of a Curie temperature at or preferably above room temperature to be compatible with junction temperatures. Among the studies of transition-metal doped conventional III–V and II–VI semiconductors, transition-metal-doped ZnO and GaN became the most extensively studied topical materials since the prediction by Dietl et al., based on mean field theory, as promising candidates to realize a diluted magnetic material with Curie temperature above room temperature. The underlying assumptions, however, such as transition metal concentrations in excess of 5% and hole concentrations of about 1020 cm−3, have not gotten as much attention. The particular predictions are predicated on the assumption that hole mediated exchange interaction is responsible for magnetic ordering. Among the additional advantages of ZnOand GaN-based DMSs are that they can be readily incorporated in the existing semiconductor heterostructure systems, where a number of optical and electronic devices have been realized, thus allowing the exploration of the underlying physics and applications based on previously unavailable combinations of quantum structures and magnetism in semiconductors. This review focuses primarily on the recent progress in the theoretical and experimental studies of ZnOand GaN-based DMSs. One of the desirable outcomes is to obtain carrier mediated magnetism, so that the magnetic properties can be manipulated by charge control, for example through external electrical voltage. We shall first describe the basic theories forwarded for the mechanisms producing ferromagnetic behavior in DMS materials, and then review the theoretical results dealing with ZnO and GaN. The rest of the review is devoted to the structural, optical, and magnetic properties of ZnOand GaN-based DMS materials reported in the literature. A critical review of the question concerning the origin of ferromagnetism in diluted magnetic semiconductors is given. In a similar vein, limitations and problems for identifying novel ferromagnetic DMS are briefly discussed, followed by challenges and a few examples of potential devices.
منابع مشابه
Challenges and Opportunities in GaN and ZnO Devices and Materials
This special issue spawned from mainly the motivation used by the scientific community in regard to potential applications of ZnO to electronic and optoelectronic devices which seemingly are centering about device applications already addressed by GaN to a large extent. The late Dr. Cole W. Litton (Fig. 1) successfully made the case that a small group of experts in both the GaN and ZnO communit...
متن کاملDirect kinetic correlation of carriers and ferromagnetism in Co2+: ZnO.
The hypothesis that high-Curie-temperature ferromagnetism in cobalt-doped ZnO (Co2+: ZnO) is mediated by charge carriers was tested by controlled introduction and removal of the shallow donor interstitial zinc. Using oriented epitaxial Co2+: ZnO films grown by chemical vapor deposition, kinetics measurements demonstrate a direct correlation between the oxidative quenching of ferromagnetism and ...
متن کاملRoom Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles
In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...
متن کاملRoom Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles
In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...
متن کاملChemical manipulation of high-T(C) ferromagnetism in ZnO diluted magnetic semiconductors.
We report the use of targeted p- and n-type chemical perturbations to manipulate high-T(C) ferromagnetism in Mn(2+):ZnO and Co(2+):ZnO in predictable and reproducible ways. We demonstrate a clear correlation between nitrogen and high-T(C) ferromagnetism for Mn(2+):ZnO and an inverse correlation for Co(2+):ZnO, both as predicted by recent theoretical models. These chemical perturbations reveal r...
متن کامل