Effects of Information Heterogeneity in Bayesian Routing Games
نویسندگان
چکیده
This article studies the value of information in route choice decisions when a fraction of players have access to high accuracy information about traffic incidents relative to others. To model such environments, we introduce a Bayesian congestion game, in which players have private information about incidents, and each player chooses her route on a network of parallel links. The links are prone to incidents that occur with an ex-ante known probability. The demand is comprised of two player populations: one with access to high accuracy incident information and another with low accuracy information, i.e. the populations differ only by their access to information. The common knowledge includes: (i) the demand and route cost functions, (ii) the fraction of highly-informed players, (iii) the incident probability, and (iv) the marginal type distributions induced by the information structure of the game. We present a full characterization of the Bayesian Wardrop Equilibrium of this game under the assumption that low information players receive no additional information beyond common knowledge. We also compute the cost to individual players and the social cost as a function of the fraction of highly-informed players when they receive perfectly accurate information. Our first result suggests that below a certain threshold of highly-informed players, both populations experience a reduction in individual cost, with the highly-informed players receiving a greater reduction. However, above this threshold, both populations realize the same equilibrium cost. Secondly, there exists another (lower or equal) threshold above which a further increase in the fraction of highly-informed players does not reduce the expected social costs. Thus, once a sufficiently large number of players are highly informed, wider distribution of more accurate information is ineffective at best, and otherwise socially harmful.
منابع مشابه
Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملInstitutional Heterogeneity in Social Dilemma Games: A Bayesian Examination
A main research focus in many Social Dilemma Games is the suitability of external institutional treatments in inducing socially optimal outcomes. It is likely that participating subjects exhibit unobserved heterogeneity in their reaction to these treatments. This type of “institutional heterogeneity” has to date not found much attention in the experimental literature. We propose a Hierarchical ...
متن کاملPrice of Anarchy of Network Routing Games with Incomplete Information
We consider a class of networks where n agents need to send their traffic from a given source to a given destination over m identical, non-intersecting, and parallel links. For such networks, our interest is in computing the worst case loss in social welfare when a distributed routing scheme is used instead of a centralized one. For this, we use a noncooperative game model with price of anarchy...
متن کاملAnalyzing Data from Social Dilemma Experiments: A Bayesian Comparison of Parametric Estimators
Observed choices in Social Dilemma games usually take the form of bounded integers. We propose a doubly-truncated count data framework to process such data. We compare this framework to past approaches based on ordered outcomes and truncated continuous densities via Bayesian estimation and model selection techniques, using data from recent field experiments in rural Colombia. We find that all t...
متن کاملProcessing Data from Social Dilemma Experiments: A Bayesian Comparison of Parametric Estimators
Observed choices in Social Dilemma Games usually take the form of bounded integers. We propose a doubly-truncated count data framework to process such data. We compare this framework to past approaches based on ordered outcomes and truncated continuous densities using Bayesian estimation and model selection techniques. We find that all three frameworks (i) support the presence of unobserved het...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.08853 شماره
صفحات -
تاریخ انتشار 2016