Distinct regulatory cascades for head and trunk myogenesis.
نویسندگان
چکیده
Most head muscles arise from the pre-otic axial and paraxial head mesoderm. This tissue does not form somites, yet expresses the somitic markers Lbx1, Pax7 and Paraxis in a regionalised fashion. The domain set aside by these markers provides the lateral rectus muscle, the most caudal of the extrinsic eye muscles. In contrast to somitic cells that express Lbx1, lateral rectus precursors are non-migratory. Moreover, the set of markers characteristic for the lateral rectus precursors differs from the marker sets indicative of somitic muscle precursors. This suggests distinct roles for Lbx1/Pax7/Paraxis in the development of head and trunk muscles. When grafted to the trunk, the pre-otic head mesoderm fails to activate Lbx1, Pax7 or PARAXIS: Likewise, somites grafted into the region of the lateral rectus precursors fail to activate the lateral rectus marker set. This suggests that distinct regulatory cascades act in the development of trunk and head muscles, possibly reflecting their distinct function and evolution.
منابع مشابه
Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle.
Recent studies have postulated that distinct regulatory cascades control myogenic differentiation in the head and the trunk. However, although the tissues and signaling molecules that induce skeletal myogenesis in the trunk have been identified, the source of the signals that trigger skeletal muscle formation in the head remain obscure. Here we show that although myogenesis in the trunk paraxia...
متن کاملDistinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates.
Genetic regulatory networks governing skeletal myogenesis in the body are well understood, yet their hierarchical relationships in the head remain unresolved. We show that either Myf5 or Mrf4 is necessary for initiating extraocular myogenesis. Whereas Mrf4 is dispensable for pharyngeal muscle progenitor fate, Tbx1 and Myf5 act synergistically for governing myogenesis in this location. As in the...
متن کاملHeart and craniofacial muscle development: a new developmental theme of distinct myogenic fields.
Head muscle development has been studied less intensively than myogenesis in the trunk, although this situation is gradually changing, as embryological and genetic insights accumulate. This review focuses on novel studies of the origins, composition and evolution of distinct craniofacial muscles. Cellular and molecular parallels are drawn between cardiac and branchiomeric muscle developmental p...
متن کاملSix Homeoproteins Directly Activate Myod Expression in the Gene Regulatory Networks That Control Early Myogenesis
In mammals, several genetic pathways have been characterized that govern engagement of multipotent embryonic progenitors into the myogenic program through the control of the key myogenic regulatory gene Myod. Here we demonstrate the involvement of Six homeoproteins. We first targeted into a Pax3 allele a sequence encoding a negative form of Six4 that binds DNA but cannot interact with essential...
متن کاملNormal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm.
Our research assesses the ability of three trunk mesodermal populations -- medial and lateral halves of newly formed somites, and presomitic (segmental plate) mesenchyme -- to participate in the differentiation and morphogenesis of craniofacial muscles. Grafts from quail donor embryos were placed in mesodermal pockets adjacent to the midbrain-hindbrain boundary, prior to the onset of neural cre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 129 3 شماره
صفحات -
تاریخ انتشار 2002