Object Recognition Using a Generalized Robust Invariant Feature and Gestalt's Law of Proximity and Similarity

نویسندگان

  • Sungho Kim
  • Kuk-Jin Yoon
  • In-So Kweon
چکیده

In this paper, we propose a new context-based method for object recognition. We first introduce a neurophysiologically motivated visual part detector. We found that the optimal form of the visual part detector is a combination of a radial symmetry detector and a corner-like structure detector. A general context descriptor, named GRIF (Generalized-Robust Invariant Feature), is then proposed, which encodes edge orientation, edge density and hue information in a unified form. Finally, a context-based voting scheme is proposed. This proposed method is inspired by the function of the human visual system, called figure-ground discrimination. We use the proximity and similarity between features to support each other. The contextual feature descriptor and contextual voting method, which use contextual information, enhance the recognition performance enormously in severely cluttered environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship

Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...

متن کامل

Biologically Motivated Perceptual Feature: Generalized Robust Invariant Feature

In this paper, we present a new, biologically inspired perceptual feature to solve the selectivity and invariance issue in object recognition. Based on the recent findings in neuronal and cognitive mechanisms in human visual systems, we develop a computationally efficient model. An effective form of a visual part detector combines a radial symmetry detector with a corner-like structure detector...

متن کامل

A novel Local feature descriptor using the Mercator projection for 3D object recognition

Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...

متن کامل

Robust detection of skewed symmetries by combining local and semi-local affine invariants

A$ne-invariant feature vector (Ip and Shen Image Vision Comput. 16 (2) (1998) 135}146), that captures both local and semi-local geometric features around each point of the object boundary is applied here for the detection of skewed symmetries. Based on the a$ne-invariant shape representation, the problem of detecting symmetry axes has been formulated as a problem of detecting lines, with known ...

متن کامل

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006