Combination Strategies to Enhance the Efficacy of Antimicrobial Peptides against Bacterial Biofilms

نویسندگان

  • Lucia Grassi
  • Giuseppantonio Maisetta
  • Semih Esin
  • Giovanna Batoni
چکیده

The great clinical significance of biofilm-associated infections and their inherent recalcitrance to antibiotic treatment urgently demand the development of novel antibiofilm strategies. In this regard, antimicrobial peptides (AMPs) are increasingly recognized as a promising template for the development of antibiofilm drugs. Indeed, owing to their main mechanism of action, which relies on the permeabilization of bacterial membranes, AMPs exhibit a strong antimicrobial activity also against multidrug-resistant bacteria and slow-growing or dormant biofilm-forming cells and are less prone to induce resistance compared to current antibiotics. Furthermore, the antimicrobial potency of AMPs can be highly increased by combining them with conventional (antibiotics) as well as unconventional bioactive molecules. Combination treatments appear particularly attractive in the case of biofilms since the heterogeneous nature of these microbial communities requires to target cells in different metabolic states (e.g., actively growing cells, dormant cells) and environmental conditions (e.g., acidic pH, lack of oxygen or nutrients). Therefore, the combination of different bioactive molecules acting against distinct biofilm components has the potential to facilitate biofilm control and/or eradication. The aim of this review is to highlight the most promising combination strategies developed so far to enhance the therapeutic potential of AMPs against bacterial biofilms. The rationale behind and beneficial outcomes of using AMPs in combination with conventional antibiotics, compounds capable of disaggregating the extracellular matrix, inhibitors of signaling pathways involved in biofilm formation (i.e., quorum sensing), and other peptide-based molecules will be presented and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual and Combined Effects of Engineered Peptides and Antibiotics on Pseudomonas aeruginosa Biofilms

Pseudomonas aeruginosa is involved in a variety of difficult-to-treat infections frequently due to biofilm formation. To identify useful antibiofilm strategies, this article evaluated efficacy of two newly engineered cationic antimicrobial peptides (17BIPHE2 and DASamP2), traditional antibiotics, and their combinations against biofilms at different stages. 17BIPHE2 is designed based on the 3D s...

متن کامل

Cloning and Expression of Two New Recombinant Antimicrobial Dermaseptin B1 Peptides in Tobacco to Control the Growth of Human Bacterial Pathogens

Background and purpose: Rapid emergence of traditional antibiotic-resistant pathogens is one of the most important global challenges in medical sciences. To this end, substitution of current antibiotics with strong antimicrobial peptides could be of great benefit. Materials and methods: In this study, the DNA sequence encoding dermaseptin B1 (DrsB1) antimicrobial peptide derived from Phyllomed...

متن کامل

Antibacterial performance of MELITININ - BMAP27 hybrid peptide against Staphylococcus aureus and Pseudomonas aeruginosa strains

Abstract Background and purpose: Multiple drug-resistant (MDR) bacterial strains have spread in different parts of hospitals. The aim of this study was to design and synthesize an effective hybrid peptide by combining different parts of two peptides to achieve the highest antibacterial activity and its inhibitory effect against Staphylococcus aureus and Pseudomonas aeruginosa strains. Materia...

متن کامل

In Vitro Activities of Nisin and Nisin Derivatives Alone and In Combination with Antibiotics against Staphylococcus Biofilms

The development and spread of pathogenic bacteria that are resistant to the existing catalog of antibiotics is a major public health threat. Biofilms are complex, sessile communities of bacteria embedded in an organic polymer matrix which serve to further enhance antimicrobial resistance. Consequently, novel compounds and innovative methods are urgently required to arrest the proliferation of d...

متن کامل

Study of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing pseudomonas aeruginosa

Objective(s): Pseudomonas aeruginosa is a nosocomial pathogen resistant to most antimicrobial treatments. Furthermore, it persists in adverse environments thereby forming biofilms on various surfaces. Researchers have therefore focused on antibiofilm strategies using nanoparticles due to their unique physicochemical properties. Superparamagnetic iron oxide nanoparticles (SIONPs) have recently s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017