L2-boundedness of the Cauchy Integral Operator for Continuous Measures

نویسنده

  • XAVIER TOLSA
چکیده

1. Introduction. Let µ be a continuous (i.e., without atoms) positive Radon measure on the complex plane. The truncated Cauchy integral of a compactly supported function f in L p (µ), 1 ≤ p ≤ +∞, is defined by Ꮿ ε f (z) = |ξ −z|>ε f (ξ) ξ − z dµ(ξ), z ∈ C, ε > 0. In this paper, we consider the problem of describing in geometric terms those measures µ for which |Ꮿ ε f | 2 dµ ≤ C |f | 2 dµ, (1) for all (compactly supported) functions f ∈ L 2 (µ) and some constant C independent of ε > 0. If (1) holds, then we say, following David and Semmes [DS2, pp. 7–8], that the Cauchy integral is bounded on L 2 (µ). A special instance to which classical methods apply occurs when µ satisfies the doubling condition µ(2) ≤ Cµ((), for all discs centered at some point of spt(µ), where 2 is the disc concentric with of double radius. In this case, standard Calderón-Zygmund theory shows that (1) is equivalent to Ꮿ * f 2 dµ ≤ C |f | 2 dµ, (2) where Ꮿ * f (z) = sup ε>0 |Ꮿ ε f (z)|. If, moreover, one can find a dense subset of L 2 (µ) for which Ꮿf (z) = lim ε→0 Ꮿ ε f (z) (3) 269 270 XAVIER TOLSA exists a.e. (µ) (i.e., almost everywhere with respect to µ), then (2) implies the a.e. (µ) existence of (3), for any f ∈ L 2 (µ), and |Ꮿf | 2 dµ ≤ C |f | 2 dµ, for any function f ∈ L 2 (µ) and some constant C. For a general µ, we do not know if the limit in (3) exists for f ∈ L 2 (µ) and almost all (µ) z ∈ C. This is why we emphasize the role of the truncated operators Ꮿ ε. Proving (1) for particular choices of µ has been a relevant theme in classical analysis in the last thirty years. Calderón's paper [Ca] is devoted to the proof of (1) when µ is the arc length on a Lipschitz graph with small Lipschitz constant. The result for a general Lipschitz graph was obtained by Coifman, McIntosh, and Meyer in 1982 in the celebrated paper [CMM]. The rectifiable curves , for which (1) holds for the arc length measure µ on …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Fourier integral operator and its boundedness

We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.

متن کامل

Weighted Hardy and singular operators in Morrey spaces

We study the weighted boundedness of the Cauchy singular integral operator SΓ in Morrey spaces L(Γ) on curves satisfying the arc-chord condition, for a class of ”radial type” almost monotonic weights. The non-weighted boundedness is shown to hold on an arbitrary Carleson curve. We show that the weighted boundedness is reduced to the boundedness of weighted Hardy operators in Morrey spaces L(0, ...

متن کامل

R-boundedness of Smooth Operator-valued Functions

In this paper we study R-boundedness of operator families T ⊂ B(X, Y ), where X and Y are Banach spaces. Under cotype and type assumptions on X and Y we give sufficient conditions for R-boundedness. In the first part we show that certain integral operator are R-bounded. This will be used to obtain R-boundedness in the case that T is the range of an operator-valued function T : Rd → B(X, Y ) whi...

متن کامل

On the Kernel of a Singular Integral Operator with Non–carleman Shift and Conjugation

On the Hilbert space ̃L2(T) the singular integral operator with non-Carleman shift and conjugation K = P+ + (aI + AC)P− is considered, where P± are the Cauchy projectors, A = m ∑ j=0 ajU j , a,aj , j = 1,m , are continuous functions on the unit circle T , U is the shift operator and C is the operator of complex conjugation. Some estimates for the dimension of the kernel of the operator K are obt...

متن کامل

Boundary Values of Cauchy Type Integrals

Results by A. G. Poltoratskĭı and A. B. Aleksandrov about nontangential boundary values of pseudocontinuable H2-functions on sets of zero Lebesgue measure are used for the study of operators on L2-spaces on the unit circle. For an arbitrary bounded operator X acting from one such L2-space to another and having the property that the commutator of it with multiplication by the independent variabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999