Variational Inference for Logical Inference
نویسندگان
چکیده
Functional Distributional Semantics is a framework that aims to learn, from text, semantic representations which can be interpreted in terms of truth. Here we make two contributions to this framework. The first is to show how a type of logical inference can be performed by evaluating conditional probabilities. The second is to make these calculations tractable by means of a variational approximation. This approximation also enables faster convergence during training, allowing us to close the gap with state-of-the-art vector space models when evaluating on semantic similarity. We demonstrate promising performance on two tasks.
منابع مشابه
Complexity Analysis and Variational Inference for Interpretation-based Probabilistic Description Logic
This paper presents complexity analysis and variational methods for inference in probabilistic description logics featuring Boolean operators, quantification, qualified number restrictions, nominals, inverse roles and role hierarchies. Inference is shown to be PEXP-complete, and variational methods are designed so as to exploit logical inference whenever possible.
متن کاملExtending the Qualitative Trajectory Calculus Based on the Concept of Accessibility of Moving Objects in the Paths
Qualitative spatial representation and reasoning are among the important capabilities in intelligent geospatial information system development. Although a large contribution to the study of moving objects has been attributed to the quantitative use and analysis of data, such calculations are ineffective when there is little inaccurate data on position and geometry or when explicitly explaining ...
متن کاملThe Impact of Contextual Clue Selection on Inference
Linguistic information can be conveyed in the form of speech and written text, but it is the content of the message that is ultimately essential for higher-level processes in language comprehension, such as making inferences and associations between text information and knowledge about the world. Linguistically, inference is the shovel that allows receivers to dig meaning out from the text with...
متن کاملTwo Methods for Wild Variational Inference
Variational inference provides a powerful tool for approximate probabilistic inference on complex, structured models. Typical variational inference methods, however, require to use inference networks with computationally tractable probability density functions. This largely limits the design and implementation of variational inference methods. We consider wild variational inference methods that...
متن کاملTruncation-free Stochastic Variational Inference for Bayesian Nonparametric Models
We present a truncation-free stochastic variational inference algorithm for Bayesian nonparametric models. While traditional variational inference algorithms require truncations for the model or the variational distribution, our method adapts model complexity on the fly. We studied our method with Dirichlet process mixture models and hierarchical Dirichlet process topic models on two large data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.00224 شماره
صفحات -
تاریخ انتشار 2017